The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame

Hansen N, Li W, Law ME, Kasper T, Westmoreland PR, Yang B, Cool TA, Lucassen A (2010)
Physical Chemistry Chemical Physics 12(38): 12112-12122.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hansen, N.; Li, W.; Law, M. E.; Kasper, T.; Westmoreland, P. R.; Yang, B.; Cool, T. A.; Lucassen, ArnasUniBi
Abstract / Bemerkung
Fuel decomposition and benzene formation processes in a premixed, laminar, low-pressure, fuel-rich flame of 1-hexene (C6H12, CH(2)QCH-CH2-CH2-CH2-CH3) are investigated by comparing quantitative mole fraction profiles of flame species with kinetic modeling results. The premixed flame, which is stabilized on a flat-flame burner under a reduced pressure of 30 Torr (= 40 mbar), is analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry which uses photoionization by tunable vacuum-ultraviolet synchrotron radiation. The temperature profile of the flame is measured by OH laser-induced fluorescence. The model calculations include the latest rate coefficients for 1-hexene decomposition (J. H. Kiefer et al., J. Phys. Chem. A, 2009, 113, 13570) and for the propargyl (C3H3) + allyl (a-C3H5) reaction (J. A. Miller et al., J. Phys. Chem. A, 2010, 114, 4881). The predicted mole fractions as a function of distance from the burner are acceptable and often even in very good agreement with the experimentally observed profiles, thus allowing an assessment of the importance of various fuel decomposition reactions and benzene formation routes. The results clearly indicate that in contrast to the normal reactions of fuel destruction by radical attack, 1-hexene is destroyed mainly by decomposition via unimolecular dissociation forming allyl (a-C3H5) and n-propyl (n-C3H7). Minor fuel-consumption pathways include H-abstraction reactions producing various isomeric C6H11 radicals with subsequent beta-scissions into C-2, C-3, and C-4 intermediates. The reaction path analysis also highlights a significant contribution through the propargyl (C3H3) + allyl (a-C3H5) reaction to the formation of benzene. In this flame, benzene is dominantly formed through H-assisted isomerization of fulvene, which itself is almost exclusively produced by the C3H3 + a-C3H5 reaction.
Erscheinungsjahr
2010
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
12
Ausgabe
38
Seite(n)
12112-12122
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/1793825

Zitieren

Hansen N, Li W, Law ME, et al. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics. 2010;12(38):12112-12122.
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., et al. (2010). The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), 12112-12122. https://doi.org/10.1039/c0cp00241k
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., and Lucassen, Arnas. 2010. “The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame”. Physical Chemistry Chemical Physics 12 (38): 12112-12122.
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., and Lucassen, A. (2010). The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics 12, 12112-12122.
Hansen, N., et al., 2010. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), p 12112-12122.
N. Hansen, et al., “The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame”, Physical Chemistry Chemical Physics, vol. 12, 2010, pp. 12112-12122.
Hansen, N., Li, W., Law, M.E., Kasper, T., Westmoreland, P.R., Yang, B., Cool, T.A., Lucassen, A.: The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics. 12, 12112-12122 (2010).
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., and Lucassen, Arnas. “The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame”. Physical Chemistry Chemical Physics 12.38 (2010): 12112-12122.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH).
Reizer E, Csizmadia IG, Palotás ÁB, Viskolcz B, Fiser B., Molecules 24(6), 2019
PMID: 30884744
Kinetics of the a-C3H5 + O2 reaction, investigated by photoionization using synchrotron radiation.
Schleier D, Constantinidis P, Faßheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B, Voronova K., Phys Chem Chem Phys 20(16), 2018
PMID: 29340384
Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.
Ruwe L, Moshammer K, Hansen N, Kohse-Höinghaus K., Phys Chem Chem Phys 20(16), 2018
PMID: 29392266

49 References

Daten bereitgestellt von Europe PubMed Central.


Bales-Gueret, Energy Fuels 6(), 1992

Fournet, Int. J. Chem. Kinet. 33(), 2001

Tsang, Int. J. Chem. Kinet. 10(), 1978
Shock tube and theory investigation of cyclohexane and 1-hexene decomposition.
Kiefer JH, Gupte KS, Harding LB, Klippenstein SJ., J Phys Chem A 113(48), 2009
PMID: 19842681

McEnally, Combust. Flame 143(), 2005

King, Int. J. Chem. Kinet. 11(), 1979

Vanhove, Proc. Combust. Inst. 30(), 2005

Yahyaoui, Proc. Combust. Inst. 30(), 2005

Yahyaoui, Combust. Flame 147(), 2006

Touchard, Proc. Combust. Inst. 30(), 2005

Mehl, Combust. Flame 155(), 2008

Hansen, Proc. Combust. Inst. (), 2010

Richter, Prog. Energy Combust. Sci. 26(), 2000

McEnally, Prog. Energy Combust. Sci. 32(), 2006

Hansen, Prog. Energy Combust. Sci. 35(), 2009

Miller, Proc. Combust. Inst. 30(), 2005

Miller, J. Phys. Chem. A 107(), 2003

Pope, Proc. Combust. Inst. 28(), 2000

Miller, Combust. Flame 91(), 1992

Marinov, Combust. Sci. Technol. 128(), 1997

Melius, Proc. Combust. Inst. 26(), 1996
Reactions between resonance-stabilized radicals: propargyl + allyl.
Miller JA, Klippenstein SJ, Georgievskii Y, Harding LB, Allen WD, Simmonett AC., J Phys Chem A 114(14), 2010
PMID: 20121283

Cool, Rev. Sci. Instrum. 76(), 2005

Cool, Proc. Combust. Inst. 30(), 2005
Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters.
Osswald P, Struckmeier U, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR., J Phys Chem A 111(19), 2007
PMID: 17388390
"Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry.
Taatjes CA, Hansen N, Osborn DL, Kohse-Hoinghaus K, Cool TA, Westmoreland PR., Phys Chem Chem Phys 10(1), 2007
PMID: 18075680

Cool, J. Chem. Phys. 119(), 2003

Struckmeier, Z. Phys. Chem. (Munich) 223(), 2009

Cool, Int. J. Mass Spectrom. 247(), 2005

Wang, Int. J. Mass Spectrom. 269(), 2008

Robinson, J. Chem. Phys. 119(), 2003

Robinson, Chem. Phys. Lett. 383(), 2004
Absolute photoionization cross-section of the methyl radical.
Taatjes CA, Osborn DL, Selby TM, Meloni G, Fan H, Pratt ST., J Phys Chem A 112(39), 2008
PMID: 18572896

Koizumi, J. Chem. Phys. 95(), 1991

Palenius, Phys. Rev. A 13(), 1976

Hansen, Combust. Flame 156(), 2009

Law, Proc. Combust. Inst. 31(), 2007
The reaction of n- and i-C4H5 radicals with acetylene.
Senosiain JP, Miller JA., J Phys Chem A 111(19), 2007
PMID: 17408247
On the combination reactions of hydrogen atoms with resonance-stabilized hydrocarbon radicals.
Harding LB, Klippenstein SJ, Georgievskii Y., J Phys Chem A 111(19), 2007
PMID: 17388384

Hansen, Proc. Combust. Inst. 32(), 2009
Reactions over multiple, interconnected potential wells: unimolecular and bimolecular reactions on a C3H5 potential.
Miller JA, Senosiain JP, Klippenstein SJ, Georgievskii Y., J Phys Chem A 112(39), 2008
PMID: 18714954

González, Z. Phys. Chem. (Munich) 215(), 2001

Hansen, Proc. Combust. Inst. 31(), 2007

Lamprecht, Combust. Flame 122(), 2000

Atakan, Combust. Flame 133(), 2003
Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames.
Hansen N, Klippenstein SJ, Taatjes CA, Miller JA, Wang J, Cool TA, Yang B, Yang R, Wei L, Huang C, Wang J, Qi F, Law ME, Westmoreland PR., J Phys Chem A 110(10), 2006
PMID: 16526650
Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame.
Hansen N, Kasper T, Klippenstein SJ, Westmoreland PR, Law ME, Taatjes CA, Kohse-Hoinghaus K, Wang J, Cool TA., J Phys Chem A 111(19), 2007
PMID: 17300183
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20820554
PubMed | Europe PMC

Suchen in

Google Scholar