The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame
Hansen N, Li W, Law ME, Kasper T, Westmoreland PR, Yang B, Cool TA, Lucassen A (2010)
Physical Chemistry Chemical Physics 12(38): 12112-12122.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hansen, N.;
Li, W.;
Law, M. E.;
Kasper, T.;
Westmoreland, P. R.;
Yang, B.;
Cool, T. A.;
Lucassen, ArnasUniBi
Einrichtung
Abstract / Bemerkung
Fuel decomposition and benzene formation processes in a premixed, laminar, low-pressure, fuel-rich flame of 1-hexene (C6H12, CH(2)QCH-CH2-CH2-CH2-CH3) are investigated by comparing quantitative mole fraction profiles of flame species with kinetic modeling results. The premixed flame, which is stabilized on a flat-flame burner under a reduced pressure of 30 Torr (= 40 mbar), is analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry which uses photoionization by tunable vacuum-ultraviolet synchrotron radiation. The temperature profile of the flame is measured by OH laser-induced fluorescence. The model calculations include the latest rate coefficients for 1-hexene decomposition (J. H. Kiefer et al., J. Phys. Chem. A, 2009, 113, 13570) and for the propargyl (C3H3) + allyl (a-C3H5) reaction (J. A. Miller et al., J. Phys. Chem. A, 2010, 114, 4881). The predicted mole fractions as a function of distance from the burner are acceptable and often even in very good agreement with the experimentally observed profiles, thus allowing an assessment of the importance of various fuel decomposition reactions and benzene formation routes. The results clearly indicate that in contrast to the normal reactions of fuel destruction by radical attack, 1-hexene is destroyed mainly by decomposition via unimolecular dissociation forming allyl (a-C3H5) and n-propyl (n-C3H7). Minor fuel-consumption pathways include H-abstraction reactions producing various isomeric C6H11 radicals with subsequent beta-scissions into C-2, C-3, and C-4 intermediates. The reaction path analysis also highlights a significant contribution through the propargyl (C3H3) + allyl (a-C3H5) reaction to the formation of benzene. In this flame, benzene is dominantly formed through H-assisted isomerization of fulvene, which itself is almost exclusively produced by the C3H3 + a-C3H5 reaction.
Erscheinungsjahr
2010
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
12
Ausgabe
38
Seite(n)
12112-12122
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/1793825
Zitieren
Hansen N, Li W, Law ME, et al. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics. 2010;12(38):12112-12122.
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., et al. (2010). The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), 12112-12122. https://doi.org/10.1039/c0cp00241k
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., and Lucassen, Arnas. 2010. “The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame”. Physical Chemistry Chemical Physics 12 (38): 12112-12122.
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., and Lucassen, A. (2010). The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics 12, 12112-12122.
Hansen, N., et al., 2010. The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics, 12(38), p 12112-12122.
N. Hansen, et al., “The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame”, Physical Chemistry Chemical Physics, vol. 12, 2010, pp. 12112-12122.
Hansen, N., Li, W., Law, M.E., Kasper, T., Westmoreland, P.R., Yang, B., Cool, T.A., Lucassen, A.: The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame. Physical Chemistry Chemical Physics. 12, 12112-12122 (2010).
Hansen, N., Li, W., Law, M. E., Kasper, T., Westmoreland, P. R., Yang, B., Cool, T. A., and Lucassen, Arnas. “The importance of fuel dissociation and propargyl + allyl association for the formation of benzene in a fuel-rich 1-hexene flame”. Physical Chemistry Chemical Physics 12.38 (2010): 12112-12122.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Formation Mechanism of Benzo(a)pyrene: One of the Most Carcinogenic Polycyclic Aromatic Hydrocarbons (PAH).
Reizer E, Csizmadia IG, Palotás ÁB, Viskolcz B, Fiser B., Molecules 24(6), 2019
PMID: 30884744
Reizer E, Csizmadia IG, Palotás ÁB, Viskolcz B, Fiser B., Molecules 24(6), 2019
PMID: 30884744
Kinetics of the a-C3H5 + O2 reaction, investigated by photoionization using synchrotron radiation.
Schleier D, Constantinidis P, Faßheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B, Voronova K., Phys Chem Chem Phys 20(16), 2018
PMID: 29340384
Schleier D, Constantinidis P, Faßheber N, Fischer I, Friedrichs G, Hemberger P, Reusch E, Sztáray B, Voronova K., Phys Chem Chem Phys 20(16), 2018
PMID: 29340384
Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.
Ruwe L, Moshammer K, Hansen N, Kohse-Höinghaus K., Phys Chem Chem Phys 20(16), 2018
PMID: 29392266
Ruwe L, Moshammer K, Hansen N, Kohse-Höinghaus K., Phys Chem Chem Phys 20(16), 2018
PMID: 29392266
Advances in threshold photoelectron spectroscopy (TPES) and threshold photoelectron photoion coincidence (TPEPICO).
Baer T, Tuckett RP., Phys Chem Chem Phys 19(15), 2017
PMID: 28252148
Baer T, Tuckett RP., Phys Chem Chem Phys 19(15), 2017
PMID: 28252148
On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.
Sinha S, Rahman RK, Raj A., Phys Chem Chem Phys 19(29), 2017
PMID: 28702614
Sinha S, Rahman RK, Raj A., Phys Chem Chem Phys 19(29), 2017
PMID: 28702614
49 References
Daten bereitgestellt von Europe PubMed Central.
Bales-Gueret, Energy Fuels 6(), 1992
Fournet, Int. J. Chem. Kinet. 33(), 2001
Tsang, Int. J. Chem. Kinet. 10(), 1978
Shock tube and theory investigation of cyclohexane and 1-hexene decomposition.
Kiefer JH, Gupte KS, Harding LB, Klippenstein SJ., J Phys Chem A 113(48), 2009
PMID: 19842681
Kiefer JH, Gupte KS, Harding LB, Klippenstein SJ., J Phys Chem A 113(48), 2009
PMID: 19842681
McEnally, Combust. Flame 143(), 2005
King, Int. J. Chem. Kinet. 11(), 1979
Vanhove, Proc. Combust. Inst. 30(), 2005
Yahyaoui, Proc. Combust. Inst. 30(), 2005
Yahyaoui, Combust. Flame 147(), 2006
Touchard, Proc. Combust. Inst. 30(), 2005
Mehl, Combust. Flame 155(), 2008
Hansen, Proc. Combust. Inst. (), 2010
Richter, Prog. Energy Combust. Sci. 26(), 2000
McEnally, Prog. Energy Combust. Sci. 32(), 2006
Hansen, Prog. Energy Combust. Sci. 35(), 2009
Miller, Proc. Combust. Inst. 30(), 2005
Miller, J. Phys. Chem. A 107(), 2003
Pope, Proc. Combust. Inst. 28(), 2000
Miller, Combust. Flame 91(), 1992
Marinov, Combust. Sci. Technol. 128(), 1997
Melius, Proc. Combust. Inst. 26(), 1996
Reactions between resonance-stabilized radicals: propargyl + allyl.
Miller JA, Klippenstein SJ, Georgievskii Y, Harding LB, Allen WD, Simmonett AC., J Phys Chem A 114(14), 2010
PMID: 20121283
Miller JA, Klippenstein SJ, Georgievskii Y, Harding LB, Allen WD, Simmonett AC., J Phys Chem A 114(14), 2010
PMID: 20121283
Cool, Rev. Sci. Instrum. 76(), 2005
Cool, Proc. Combust. Inst. 30(), 2005
Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters.
Osswald P, Struckmeier U, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR., J Phys Chem A 111(19), 2007
PMID: 17388390
Osswald P, Struckmeier U, Kasper T, Kohse-Hoinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR., J Phys Chem A 111(19), 2007
PMID: 17388390
"Imaging" combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry.
Taatjes CA, Hansen N, Osborn DL, Kohse-Hoinghaus K, Cool TA, Westmoreland PR., Phys Chem Chem Phys 10(1), 2007
PMID: 18075680
Taatjes CA, Hansen N, Osborn DL, Kohse-Hoinghaus K, Cool TA, Westmoreland PR., Phys Chem Chem Phys 10(1), 2007
PMID: 18075680
Cool, J. Chem. Phys. 119(), 2003
Struckmeier, Z. Phys. Chem. (Munich) 223(), 2009
Cool, Int. J. Mass Spectrom. 247(), 2005
Wang, Int. J. Mass Spectrom. 269(), 2008
Robinson, J. Chem. Phys. 119(), 2003
Robinson, Chem. Phys. Lett. 383(), 2004
Absolute photoionization cross-section of the methyl radical.
Taatjes CA, Osborn DL, Selby TM, Meloni G, Fan H, Pratt ST., J Phys Chem A 112(39), 2008
PMID: 18572896
Taatjes CA, Osborn DL, Selby TM, Meloni G, Fan H, Pratt ST., J Phys Chem A 112(39), 2008
PMID: 18572896
Koizumi, J. Chem. Phys. 95(), 1991
Palenius, Phys. Rev. A 13(), 1976
Hansen, Combust. Flame 156(), 2009
Law, Proc. Combust. Inst. 31(), 2007
Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5.
Georgievskii Y, Miller JA, Klippenstein SJ., Phys Chem Chem Phys 9(31), 2007
PMID: 17687474
Georgievskii Y, Miller JA, Klippenstein SJ., Phys Chem Chem Phys 9(31), 2007
PMID: 17687474
The reaction of n- and i-C4H5 radicals with acetylene.
Senosiain JP, Miller JA., J Phys Chem A 111(19), 2007
PMID: 17408247
Senosiain JP, Miller JA., J Phys Chem A 111(19), 2007
PMID: 17408247
On the combination reactions of hydrogen atoms with resonance-stabilized hydrocarbon radicals.
Harding LB, Klippenstein SJ, Georgievskii Y., J Phys Chem A 111(19), 2007
PMID: 17388384
Harding LB, Klippenstein SJ, Georgievskii Y., J Phys Chem A 111(19), 2007
PMID: 17388384
Hansen, Proc. Combust. Inst. 32(), 2009
Reactions over multiple, interconnected potential wells: unimolecular and bimolecular reactions on a C3H5 potential.
Miller JA, Senosiain JP, Klippenstein SJ, Georgievskii Y., J Phys Chem A 112(39), 2008
PMID: 18714954
Miller JA, Senosiain JP, Klippenstein SJ, Georgievskii Y., J Phys Chem A 112(39), 2008
PMID: 18714954
The addition of hydrogen atoms to diacetylene and the heats of formation of i-C4H3 and n-C4H3.
Klippenstein SJ, Miller JA., J Phys Chem A 109(19), 2005
PMID: 16833758
Klippenstein SJ, Miller JA., J Phys Chem A 109(19), 2005
PMID: 16833758
González, Z. Phys. Chem. (Munich) 215(), 2001
Hansen, Proc. Combust. Inst. 31(), 2007
Lamprecht, Combust. Flame 122(), 2000
Atakan, Combust. Flame 133(), 2003
Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames.
Hansen N, Klippenstein SJ, Taatjes CA, Miller JA, Wang J, Cool TA, Yang B, Yang R, Wei L, Huang C, Wang J, Qi F, Law ME, Westmoreland PR., J Phys Chem A 110(10), 2006
PMID: 16526650
Hansen N, Klippenstein SJ, Taatjes CA, Miller JA, Wang J, Cool TA, Yang B, Yang R, Wei L, Huang C, Wang J, Qi F, Law ME, Westmoreland PR., J Phys Chem A 110(10), 2006
PMID: 16526650
Initial steps of aromatic ring formation in a laminar premixed fuel-rich cyclopentene flame.
Hansen N, Kasper T, Klippenstein SJ, Westmoreland PR, Law ME, Taatjes CA, Kohse-Hoinghaus K, Wang J, Cool TA., J Phys Chem A 111(19), 2007
PMID: 17300183
Hansen N, Kasper T, Klippenstein SJ, Westmoreland PR, Law ME, Taatjes CA, Kohse-Hoinghaus K, Wang J, Cool TA., J Phys Chem A 111(19), 2007
PMID: 17300183
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 20820554
PubMed | Europe PMC
Suchen in