Localized direction selective responses in the dendrites of visual interneurons of the fly

Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R (2010)
BMC Biology 8(1): 36.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
OA Spalthoff.pdf
Abstract / Bemerkung
Background: The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs. Results: Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs. Conclusions: Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns.
Erscheinungsjahr
2010
Zeitschriftentitel
BMC Biology
Band
8
Ausgabe
1
Art.-Nr.
36
ISSN
1741-7007
Page URI
https://pub.uni-bielefeld.de/record/1785494

Zitieren

Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R. Localized direction selective responses in the dendrites of visual interneurons of the fly. BMC Biology. 2010;8(1): 36.
Spalthoff, C., Egelhaaf, M., Tinnefeld, P., & Kurtz, R. (2010). Localized direction selective responses in the dendrites of visual interneurons of the fly. BMC Biology, 8(1), 36. https://doi.org/10.1186/1741-7007-8-36
Spalthoff, Christian, Egelhaaf, Martin, Tinnefeld, Philip, and Kurtz, Rafael. 2010. “Localized direction selective responses in the dendrites of visual interneurons of the fly”. BMC Biology 8 (1): 36.
Spalthoff, C., Egelhaaf, M., Tinnefeld, P., and Kurtz, R. (2010). Localized direction selective responses in the dendrites of visual interneurons of the fly. BMC Biology 8:36.
Spalthoff, C., et al., 2010. Localized direction selective responses in the dendrites of visual interneurons of the fly. BMC Biology, 8(1): 36.
C. Spalthoff, et al., “Localized direction selective responses in the dendrites of visual interneurons of the fly”, BMC Biology, vol. 8, 2010, : 36.
Spalthoff, C., Egelhaaf, M., Tinnefeld, P., Kurtz, R.: Localized direction selective responses in the dendrites of visual interneurons of the fly. BMC Biology. 8, : 36 (2010).
Spalthoff, Christian, Egelhaaf, Martin, Tinnefeld, Philip, and Kurtz, Rafael. “Localized direction selective responses in the dendrites of visual interneurons of the fly”. BMC Biology 8.1 (2010): 36.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:49:03Z
MD5 Prüfsumme
471260082f25ce74103e0198f2928961
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:49:03Z
MD5 Prüfsumme
471260082f25ce74103e0198f2928961


9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(5), 2014
PMID: 24647929
Representation of thermal information in the antennal lobe of leaf-cutting ants.
Ruchty M, Helmchen F, Wehner R, Kleineidam CJ., Front Behav Neurosci 4(), 2010
PMID: 21120133

30 References

Daten bereitgestellt von Europe PubMed Central.

Vision in flying insects.
Egelhaaf M, Kern R., Curr. Opin. Neurobiol. 12(6), 2002
PMID: 12490262
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Common reference frame for neural coding of translational and rotational optic flow.
Wylie DR, Bischof WF, Frost BJ., Nature 392(6673), 1998
PMID: 9521321
Mechanisms of self-motion perception.
Britten KH., Annu. Rev. Neurosci. 31(), 2008
PMID: 18558861
Neuronal matched filters for optic flow processing in flying insects.
Krapp HG., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605643
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Functional neuroanatomy of the blowfly's visual system
AUTHOR UNKNOWN, 1984
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Mechanisms of dendritic calcium signaling in fly neurons.
Oertner TG, Brotz TM, Borst A., J. Neurophysiol. 85(1), 2001
PMID: 11152745
Local current spread in electrically compact neurons of the fly.
Borst A, Single S., Neurosci. Lett. 285(2), 2000
PMID: 10793242
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Neural mechanisms of visual course control in insects
AUTHOR UNKNOWN, 1989
Different mechanisms of calcium entry within different dendritic compartments.
Single S, Borst A., J. Neurophysiol. 87(3), 2002
PMID: 11877530
Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics
AUTHOR UNKNOWN, 2001
Motion sensitive interneurons in the optomotor system of the fly - 1. The horizontal cells: structure and signals
AUTHOR UNKNOWN, 1982
Motion sensitive interneurons in the optomotor system of the fly - 2. The horizontal cells: receptive field organization and response
AUTHOR UNKNOWN, 1982
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions
AUTHOR UNKNOWN, 2003
Retinal lattice, visual field and binocularities in flies
AUTHOR UNKNOWN, 1977
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J. Neurosci. Methods 151(2), 2006
PMID: 16442636
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20384983
PubMed | Europe PMC

Suchen in

Google Scholar