Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

Keary N, Ruploh T, Voss J, Thalau P, Wiltschko R, Wiltschko W, Bischof H-J (2009)
Frontiers in Zoology 6(1): 25.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Keary, NinaUniBi; Ruploh, TimUniBi; Voss, Joe; Thalau, Peter; Wiltschko, Roswitha; Wiltschko, Wolfgang; Bischof, Hans-JoachimUniBi
Abstract / Bemerkung
Background: Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods: In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz) was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results: The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion: The results indicate that zebra finches use a receptor that bases on radical pair processes for sensing the direction of the earth magnetic field in this short distance orientation behavior.
Erscheinungsjahr
2009
Zeitschriftentitel
Frontiers in Zoology
Band
6
Ausgabe
1
Seite(n)
25
ISSN
1742-9994
Page URI
https://pub.uni-bielefeld.de/record/1785080

Zitieren

Keary N, Ruploh T, Voss J, et al. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Frontiers in Zoology. 2009;6(1):25.
Keary, N., Ruploh, T., Voss, J., Thalau, P., Wiltschko, R., Wiltschko, W., & Bischof, H. - J. (2009). Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Frontiers in Zoology, 6(1), 25. https://doi.org/10.1186/1742-9994-6-25
Keary, Nina, Ruploh, Tim, Voss, Joe, Thalau, Peter, Wiltschko, Roswitha, Wiltschko, Wolfgang, and Bischof, Hans-Joachim. 2009. “Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata”. Frontiers in Zoology 6 (1): 25.
Keary, N., Ruploh, T., Voss, J., Thalau, P., Wiltschko, R., Wiltschko, W., and Bischof, H. - J. (2009). Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Frontiers in Zoology 6, 25.
Keary, N., et al., 2009. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Frontiers in Zoology, 6(1), p 25.
N. Keary, et al., “Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata”, Frontiers in Zoology, vol. 6, 2009, pp. 25.
Keary, N., Ruploh, T., Voss, J., Thalau, P., Wiltschko, R., Wiltschko, W., Bischof, H.-J.: Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata. Frontiers in Zoology. 6, 25 (2009).
Keary, Nina, Ruploh, Tim, Voss, Joe, Thalau, Peter, Wiltschko, Roswitha, Wiltschko, Wolfgang, and Bischof, Hans-Joachim. “Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata”. Frontiers in Zoology 6.1 (2009): 25.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:59Z
MD5 Prüfsumme
e6a99d685ff0a9bdc1da6f6d40ec7d48


25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An experimental approach in revisiting the magnetic orientation of cattle.
Weijers D, Hemerik L, Heitkönig IMA., PLoS One 13(4), 2018
PMID: 29641517
Magnetoreception: activation of avian cryptochrome 1a in various light conditions.
Nießner C, Denzau S, Peichl L, Wiltschko W, Wiltschko R., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(12), 2018
PMID: 30350127
Zebra finches have a light-dependent magnetic compass similar to migratory birds.
Pinzon-Rodriguez A, Muheim R., J Exp Biol 220(pt 7), 2017
PMID: 28356366
Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants.
Pakhomov A, Bojarinova J, Cherbunin R, Chetverikova R, Grigoryev PS, Kavokin K, Kobylkov D, Lubkovskaja R, Chernetsov N., J R Soc Interface 14(133), 2017
PMID: 28794163
Disruption of Magnetic Compass Orientation in Migratory Birds by Radiofrequency Electromagnetic Fields.
Hiscock HG, Mouritsen H, Manolopoulos DE, Hore PJ., Biophys J 113(7), 2017
PMID: 28978441
Polarized light modulates light-dependent magnetic compass orientation in birds.
Muheim R, Sjöberg S, Pinzon-Rodriguez A., Proc Natl Acad Sci U S A 113(6), 2016
PMID: 26811473
Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird.
Nießner C, Gross JC, Denzau S, Peichl L, Fleissner G, Wiltschko W, Wiltschko R., PLoS One 11(3), 2016
PMID: 26953690
Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
Wiltschko R, Ahmad M, Nießner C, Gehring D, Wiltschko W., J R Soc Interface 13(118), 2016
PMID: 27146685
Magnetoreception in birds: the effect of radio-frequency fields.
Wiltschko R, Thalau P, Gehring D, Nießner C, Ritz T, Wiltschko W., J R Soc Interface 12(103), 2015
PMID: 25540238
Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields.
Malkemper EP, Eder SH, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H., Sci Rep 4(), 2015
PMID: 25923312
Orientation of migratory birds under ultraviolet light.
Wiltschko R, Munro U, Ford H, Stapput K, Thalau P, Wiltschko W., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(5), 2014
PMID: 24718656
Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
Wiltschko R, Wiltschko W., Biosensors (Basel) 4(3), 2014
PMID: 25587420
Magnetoreception in birds: I. Immunohistochemical studies concerning the cryptochrome cycle.
Nießner C, Denzau S, Peichl L, Wiltschko W, Wiltschko R., J Exp Biol 217(pt 23), 2014
PMID: 25472972
The magnetic compass of domestic chickens.
Denzau S, Nießner C, Rogers LJ, Wiltschko W., Commun Integr Biol 6(6), 2013
PMID: 24753787
A new type of radical-pair-based model for magnetoreception.
Stoneham AM, Gauger EM, Porfyrakis K, Benjamin SC, Lovett BW., Biophys J 102(5), 2012
PMID: 22404918
Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both?
Hellinger J, Hoffmann KP., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(8), 2012
PMID: 22592858
Avian ultraviolet/violet cones identified as probable magnetoreceptors.
Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R., PLoS One 6(5), 2011
PMID: 21647441
Conditioning domestic chickens to a magnetic anomaly.
Denzau S, Kuriakose D, Freire R, Munro U, Wiltschko W., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(12), 2011
PMID: 21894488
Avian ultraviolet/violet cones as magnetoreceptors: The problem of separating visual and magnetic information.
Bischof HJ, Nießner C, Peichl L, Wiltschko R, Wiltschko W., Commun Integr Biol 4(6), 2011
PMID: 22446535
Photoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing.
Ritz T, Ahmad M, Mouritsen H, Wiltschko R, Wiltschko W., J R Soc Interface 7 Suppl 2(), 2010
PMID: 20129953

34 References

Daten bereitgestellt von Europe PubMed Central.

Evidence for celestial and magnetic compass orienttaion in lake migrating sockeye salmon fry
Quinn TP., 1980
Experimental evidence for geomagnetic orientation in juvenile chinook salmon, Oncorhynchus tschawytscha
Taylor PB., 1986
Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae).
Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W., Experientia 46(5), 1990
PMID: 2347407
Bats respond to polarity of a magnetic field.
Wang Y, Pan Y, Parsons S, Walker M, Zhang S., Proc. Biol. Sci. 274(1627), 2007
PMID: 17848365
Magnetic compass orientation in C57BL/6J mice.
Muheim R, Edgar NM, Sloan KA, Phillips JB., Learn Behav 34(4), 2006
PMID: 17330527
Magnetoreception in birds: two receptors for two different tasks
Wiltschko W, Wiltschko R., 2007
Chickens orient using a magnetic compass.
Freire R, Munro UH, Rogers LJ, Wiltschko R, Wiltschko W., Curr. Biol. 15(16), 2005
PMID: 16111930
The magnetic compass of domestic chickens, Gallus gallus.
Wiltschko W, Freire R, Munro U, Ritz T, Rogers L, Thalau P, Wiltschko R., J. Exp. Biol. 210(Pt 13), 2007
PMID: 17575035
The use of the geomagnetic field for short distance orientation in zebra finches.
Voss J, Keary N, Bischof HJ., Neuroreport 18(10), 2007
PMID: 17558295
Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird
Beason RC, Nichols JE., 1984
Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons.
Fleissner G, Holtkamp-Rotzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W., J. Comp. Neurol. 458(4), 2003
PMID: 12619070
Biogenic magnetite as a basis for magnetic field detection in animals.
Kirschvink JL, Gould JL., BioSystems 13(3), 1981
PMID: 7213948
A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons.
Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G., Naturwissenschaften 94(8), 2007
PMID: 17361399
Does the avian ophthalmic nerve carry magnetic navigational information?
Beason R, Semm P., J. Exp. Biol. 199(Pt 5), 1996
PMID: 9319100
Model for a physiological magnetic compass
Schulten K, Windemuth A., 1986
A model for photoreceptor-based magnetoreception in birds.
Ritz T, Adem S, Schulten K., Biophys. J. 78(2), 2000
PMID: 10653784
Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field.
Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W., Naturwissenschaften 92(2), 2004
PMID: 15614508
Magnetic compass of birds is based on a molecule with optimal directional sensitivity.
Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Timmel CR, Wiltschko W., Biophys. J. 96(8), 2009
PMID: 19383488
Resonance effects indicate a radical-pair mechanism for avian magnetic compass.
Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W., Nature 429(6988), 2004
PMID: 15141211
The magnetic compass mechanisms of birds and rodents are based on different physical principles.
Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R., J R Soc Interface 3(9), 2006
PMID: 16849254
Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal.
Wegner RE, Begall S, Burda H., J. Exp. Biol. 209(Pt 23), 2006
PMID: 17114407
Chickens' Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors.
Bailey MJ, Chong NW, Xiong J, Cassone VM., FEBS Lett. 513(2-3), 2002
PMID: 11904144
Dual regulation of cryptochrome 1 mRNA expression in chicken retina by light and circadian oscillators.
Haque R, Chaurasia SS, Wessel JH 3rd, Iuvone PM., Neuroreport 13(17), 2002
PMID: 12488805
Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass.
Moller A, Sagasser S, Wiltschko W, Schierwater B., Naturwissenschaften 91(12), 2004
PMID: 15551029
Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation.
Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R., Proc. Natl. Acad. Sci. U.S.A. 101(39), 2004
PMID: 15381765
The human visual threshold depends on direction and strength of a weak magnetic field.
Thoss F, Bartsch B., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189(10), 2003
PMID: 12942272
Diversification of Neoaves: integration of molecular sequence data and fossils.
Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Kallersjo M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G., Biol. Lett. 2(4), 2006
PMID: 17148284
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19852792
PubMed | Europe PMC

Suchen in

Google Scholar