Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms

Wadepuhl M, Beyn W-J (1989)
Journal of Theoretical Biology 136(4): 379-402.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Abstract / Bemerkung
The functional principles of a hydrostatic skeleton were combined to obtain a physical model which includes geometry, number and length-tension relationships of the elastic elements in the body wall, internal volume and internal pressure. The model skeleton with pre-set internal volume assumes a certain shape and develops a specific internal pressure in order to minimize the potential energy stored in the elastic elements. This shape is calculated as equilibrium state by using finite element methods and optimization techniques. This model is flexible enough to accommodate different geometries and length-tension-relationships of the elastic elements. Presently, the model is implemented with linear length-tension relationships and certain geometrical restrictions, such as uniform width over the entire animal, and rectangular cross sections; the general case is outlined. First simulations with the “unit-worm” yield stable solutions, i.e. stable shapes for all combinations of parameters tested so far. They define the conditions for bringing all muscles to an optimal operating point. We detected a pressure maximum with increasing volume, assessed the contribution of circular muscles to bending, and determined the shapes of animals with different muscle activations in each body half (Chapman-matrix). We summarize our results by the volume rule and stabilization rule, two simple concepts which predict changes in shape as the result of muscle activation.
Erscheinungsjahr
1989
Zeitschriftentitel
Journal of Theoretical Biology
Band
136
Ausgabe
4
Seite(n)
379-402
ISSN
0022-5193
Page URI
https://pub.uni-bielefeld.de/record/1784258

Zitieren

Wadepuhl M, Beyn W-J. Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms. Journal of Theoretical Biology. 1989;136(4):379-402.
Wadepuhl, M., & Beyn, W. - J. (1989). Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms. Journal of Theoretical Biology, 136(4), 379-402. https://doi.org/10.1016/S0022-5193(89)80155-9
Wadepuhl, M., and Beyn, Wolf-Jürgen. 1989. “Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms”. Journal of Theoretical Biology 136 (4): 379-402.
Wadepuhl, M., and Beyn, W. - J. (1989). Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms. Journal of Theoretical Biology 136, 379-402.
Wadepuhl, M., & Beyn, W.-J., 1989. Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms. Journal of Theoretical Biology, 136(4), p 379-402.
M. Wadepuhl and W.-J. Beyn, “Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms”, Journal of Theoretical Biology, vol. 136, 1989, pp. 379-402.
Wadepuhl, M., Beyn, W.-J.: Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms. Journal of Theoretical Biology. 136, 379-402 (1989).
Wadepuhl, M., and Beyn, Wolf-Jürgen. “Computer simulation of the hydrostatic skeleton: the physical equivalent, mathematics and application to worm-like forms”. Journal of Theoretical Biology 136.4 (1989): 379-402.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:54Z
MD5 Prüfsumme
098dd0b98aedd38bb4f3631b191a52a5


7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Derivation of a finite-element model of lingual deformation during swallowing from the mechanics of mesoscale myofiber tracts obtained by MRI.
Mijailovich SM, Stojanovic B, Kojic M, Liang A, Wedeen VJ, Gilbert RJ., J Appl Physiol (1985) 109(5), 2010
PMID: 20689096
Soft-cuticle biomechanics: a constitutive model of anisotropy for caterpillar integument.
Lin HT, Dorfmann AL, Trimmer BA., J Theor Biol 256(3), 2009
PMID: 19014955
Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
Yekutieli Y, Sagiv-Zohar R, Aharonov R, Engel Y, Hochner B, Flash T., J Neurophysiol 94(2), 2005
PMID: 15829594
Neuronal control of leech behavior.
Kristan WB, Calabrese RL, Friesen WO., Prog Neurobiol 76(5), 2005
PMID: 16260077
Biomechanical analysis of Oligochaeta crawling.
Accoto D, Castrataro P, Dario P., J Theor Biol 230(1), 2004
PMID: 15275999

35 References

Daten bereitgestellt von Europe PubMed Central.


Alexander, 1979
Bending of cylindrical animals with helical fibres in their skin or cuticle
Alexander, J. theor. Biol. 124(), 1987

Barrington, 1979
Muscular and hydrostatic action in the sea-anemone Metridium senile (L.).
BATHAM EJ, PANTIN CF., J. Exp. Biol. 27(3-4), 1950
PMID: 14803612

Beyer, 1975
On the movement of worms
Chapman, J. exp. Biol. 27(), 1950
The hydrostatic skeleton in the invertebrates
Chapman, Biol. Rev. 33(), 1958
Factors controlling the change of shape of certain nemertean and turbellarian worms
Clark, J. exp. Biol. 35(), 1958
Zum Trageverhalten des Alpenveilchens
Dierks, 1986
Der Knochen als hydraulisches System
Draenert, Pneu und Knochen II. Konzepte SFB 230 14(), 1986

Fletcher, 1981
The hydraulic principle
Gutmann, Am. Zool. 28(), 1988
Fluid skeletons in aquatic and terrestrial animals
Jones, 1978
Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats
Kier, Zool. J. Linnean Soc. 83(), 1985
Behavioural and mechanosensory neurone responses to skin stimulation in leeches
Kristan, J. exp. Biol. 96(), 1982
Neuronal control of swimming in the medicinal leech. I. Dynamics of the swimming rhythm
Kristan, J. Comp. Physiol. A 94(), 1974

Lang, 1968
Superelongation in helical muscles of leeches.
Lanzavecchia G, de Eguileor M, Valvassori R., J. Muscle Res. Cell. Motil. 6(5), 1985
PMID: 4066930

Mann, 1962
Two rates of relaxation in the dorsal longitudinal muscle of a leech
Miller, J. exp. Biol. 58(), 1973

Muller, 1981

Norrie, 1978

Otto, 1982
Neuronal control of swimming in the medicinal leech. II. identification and connections of motor neurons
Ort, J. Comp. Physiol. A 94(), 1974
Leech biology and behavior
Sawyer, 1981

Sawyer, 1986
A kinematic study of crawling behavior in the leech, Hirudo medicinalis.
Stern-Tomlinson W, Nusbaum MP, Perez LE, Kristan WB Jr., J. Comp. Physiol. A 158(4), 1986
PMID: 3723440
On growth and form
Thompson, 1971
Computersimulation des Hydroskeletts bei Anneliden
Wadepuhl, 1987
Neural control of a hydroskeleton: Predictions based on a computermodel
Wadepuhl, 1988
Design in hydraulic organisms
Wainwright, Naturwissenschaften. 57(), 1970
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 2811399
PubMed | Europe PMC

Suchen in

Google Scholar