Life cycle and population growth rate of Caenorhabditis elegans studied by a new method

Muschiol D, Schroeder F, Traunspurger W (2009)
BMC Ecology 9(1): 14.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Background: The free-living nematode Caenorhabditis elegans is the predominant model organism in biological research, being used by a huge number of laboratories worldwide. Many researchers have evaluated life-history traits of C. elegans in investigations covering quite different aspects such as ecotoxicology, inbreeding depression and heterosis, dietary restriction/supplement, mutations, and ageing. Such traits include juvenile growth rates, age at sexual maturity, adult body size, age-specific fecundity/mortality, total reproduction, mean and maximum lifespan, and intrinsic population growth rates. However, we found that in life-cycle experiments care is needed regarding protocol design. Here, we test a recently developed method that overcomes some problems associated with traditional cultivation techniques. In this fast and yet precise approach, single individuals are maintained within hanging drops of semi-fluid culture medium, allowing the simultaneous investigation of various life-history traits at any desired degree of accuracy. Here, the life cycles of wild-type C. elegans strains N2 (Bristol, UK) and MY6 (Münster, Germany) were compared at 20°C with 5 × 10 9 Escherichia coli ml -1 as food source. Results: High-resolution life tables and fecundity schedules of the two strains are presented. Though isolated 700 km and 60 years apart from each other, the two strains barely differed in life-cycle parameters. For strain N2 (n = 69), the intrinsic rate of natural increase (rmd-1), calculated according to the Lotka equation, was 1.375, the net reproductive rate (R 0) 291, the mean generation time (T) 90 h, and the minimum generation time (T min) 73.0 h. The corresponding values for strain MY6 (n = 72) were r m = 1.460, R 0 = 289, T = 84 h, and T min = 67.3 h. Peak egg-laying rates in both strains exceeded 140 eggs d -1. Juvenile and early adulthood mortality was negligible. Strain N2 lived, on average, for 16.7 d, while strain MY6 died 2 days earlier; however, differences in survivorship curves were statistically non-significant. Conclusion: We found no evidence that adaptation to the laboratory altered the life history traits of C. elegans strain N2. Our results, discussed in the light of earlier studies on C. elegans, demonstrate certain advantages of the hanging drop method in investigations of nematode life cycles. Assuming that its reproducibility is validated in further studies, the method will reduce the inter-laboratory variability of life-history estimates and may ultimately prove to be more convenient than the current standard methods used by C. elegans researchers.
BMC Ecology
Page URI


Muschiol D, Schroeder F, Traunspurger W. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology. 2009;9(1):14.
Muschiol, D., Schroeder, F., & Traunspurger, W. (2009). Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology, 9(1), 14.
Muschiol, Daniel, Schroeder, Fabian, and Traunspurger, Walter. 2009. “Life cycle and population growth rate of Caenorhabditis elegans studied by a new method”. BMC Ecology 9 (1): 14.
Muschiol, D., Schroeder, F., and Traunspurger, W. (2009). Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology 9, 14.
Muschiol, D., Schroeder, F., & Traunspurger, W., 2009. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology, 9(1), p 14.
D. Muschiol, F. Schroeder, and W. Traunspurger, “Life cycle and population growth rate of Caenorhabditis elegans studied by a new method”, BMC Ecology, vol. 9, 2009, pp. 14.
Muschiol, D., Schroeder, F., Traunspurger, W.: Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology. 9, 14 (2009).
Muschiol, Daniel, Schroeder, Fabian, and Traunspurger, Walter. “Life cycle and population growth rate of Caenorhabditis elegans studied by a new method”. BMC Ecology 9.1 (2009): 14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Non-mammalian Hosts and Photobiomodulation: Do All Life-forms Respond to Light?
Hamblin MR, Huang YY, Heiskanen V., Photochem Photobiol 95(1), 2019
PMID: 29882348
Maternal age alters offspring lifespan, fitness, and lifespan extension under caloric restriction.
Bock MJ, Jarvis GC, Corey EL, Stone EE, Gribble KE., Sci Rep 9(1), 2019
PMID: 30816287
Flatworm mucus as the base of a food web.
Wilden B, Majdi N, Kuhlicke U, Neu TR, Traunspurger W., BMC Ecol 19(1), 2019
PMID: 30925873
A Novel Virulence Phenotype Rapidly Assesses Candida Fungal Pathogenesis in Healthy and Immunocompromised Caenorhabditis elegans Hosts.
Feistel DJ, Elmostafa R, Nguyen N, Penley M, Morran L, Hickman MA., mSphere 4(2), 2019
PMID: 30971447
Phospholipase D functional ablation has a protective effect in an Alzheimer's disease Caenorhabditis elegans model.
Bravo FV, Da Silva J, Chan RB, Di Paolo G, Teixeira-Castro A, Oliveira TG., Sci Rep 8(1), 2018
PMID: 29476137
A novel method for assessing the toxicity of silver nanoparticles in Caenorhabditis elegans.
Luo X, Xu S, Yang Y, Zhang Y, Wang S, Chen S, Xu A, Wu L., Chemosphere 168(), 2017
PMID: 27836269
A dynamic energy-based model to analyze sublethal effects of chronic gamma irradiation in the nematode Caenorhabditis elegans.
Lecomte-Pradines C, Hertel-Aas T, Coutris C, Gilbin R, Oughton D, Alonzo F., J Toxicol Environ Health A 80(16-18), 2017
PMID: 28837407
Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos.
Schmökel V, Memar N, Wiekenberg A, Trotzmüller M, Schnabel R, Döring F., Genetics 202(3), 2016
PMID: 26773047
Energy-based modelling to assess effects of chemicals on Caenorhabditis elegans: a case study on uranium.
Goussen B, Beaudouin R, Dutilleul M, Buisset-Goussen A, Bonzom JM, Péry AR., Chemosphere 120(), 2015
PMID: 25278179
Experimental studies with nematodes in ecotoxicology: an overview.
Hägerbäumer A, Höss S, Heininger P, Traunspurger W., J Nematol 47(1), 2015
PMID: 25861113
Synergistic effects induced by a low dose of diesel particulate extract and ultraviolet-A in Caenorhabditis elegans: DNA damage-triggered germ cell apoptosis.
Guo X, Bian P, Liang J, Wang Y, Li L, Wang J, Yuan H, Chen S, Xu A, Wu L., Chem Res Toxicol 27(6), 2014
PMID: 24841043
Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans.
Li WH, Ju YR, Liao CM, Liao VH., Ecotoxicology 23(7), 2014
PMID: 24906985

59 References

Daten bereitgestellt von Europe PubMed Central.

Riddle DL, Blumenthal T, Meyer BJ, Priess JR., 1997
The embryonic cell lineage of the nematode Caenorhabditis elegans.
Sulston JE, Schierenberg E, White JG, Thomson JN., Dev. Biol. 100(1), 1983
PMID: 6684600
The intrinsic rate of natural increase of an insect population
Birch LC., 1948
Inbreeding and outbreeding depression in Caenorhabditis nematodes.
Dolgin ES, Charlesworth B, Baird SE, Cutter AD., Evolution 61(6), 2007
PMID: 17542844
Genetic analysis of life-span in Caenorhabditis elegans.
Johnson TE, Wood WB., Proc. Natl. Acad. Sci. U.S.A. 79(21), 1982
PMID: 6959141
Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans.
Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR., Exp. Gerontol. 38(9), 2003
PMID: 12954481
Dietary regulation of hypodermal polyploidization in C. elegans.
Tain LS, Lozano E, Saez AG, Leroi AM., BMC Dev. Biol. 8(), 2008
PMID: 18366811
Fecundity and lifespan manipulations in Caenorhabditis elegans using exogenous peptides
Davies KG, Hart JE., 2008
Spontaneous mutational variation for body size in Caenorhabditis elegans.
Azevedo RB, Keightley PD, Lauren-Maatta C, Vassilieva LL, Lynch M, Leroi AM., Genetics 162(2), 2002
PMID: 12399386
Influence of developmental stage, salts and food presence on various end-points using Caenorhabditis elegans for aquatic toxicity testing
Donkin SG, Williams PL., 1995
Enhanced growth and reproduction of Caenorhabditis elegans (Nematoda) in the presence of 4-nonylphenol.
Hoss S, Juttner I, Traunspurgerd W, Pfisterb G, Schramm KW, Steinberg CE., Environ. Pollut. 120(2), 2002
PMID: 12395827
Ecotoxicological assessment of aquatic sediments with Caenorhabditis elegans (Nematoda) – A method for testing liquid medium and whole-sediment samples
Traunspurger W, Haitzer M, Höss S, Beier S, Ahlf W, Steinberg C., 1997
Aquatic toxicity testing using the nematode Caenorhabditis elegans
Williams PL, Dusenbery DB., 1990
Dissecting the process of aging using the nematode Caenorhabditis elegans
Henderson ST, Rea SL, Johnson TE., 2006
More is not better: brood size and population growth in a self-fertilizing nematode.
Hodgkin J, Barnes TM., Proc. Biol. Sci. 246(1315), 1991
PMID: 1684664
Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania
Muschiol D, Traunspurger W., 2007
The ecology and biodemography of Caenorhabditis elegans.
Chen J, Lewis EE, Carey JR, Caswell H, Caswell-Chen EP., Exp. Gerontol. 41(10), 2006
PMID: 16963216
The genetics of Caenorhabditis elegans.
Brenner S., Genetics 77(1), 1974
PMID: 4366476
Sulston J, Hodgkin J., 1988
Genetic variants and mutations of Caenorhabditis elegans provide tools for dissecting the aging processes
Johnson TE, Friedman DB, Foltz N, Fitzpatrick PA, Shoemaker JE., 1990

Charlesworth B., 1994

Hope IA., 1999
Endotokia matricida and intra-uterine development and hatching in nematodes
Luc M, Taylor DP, Netscher C., 1979

Caughley G, Gunn A., 1996

Lotka AJ., 1924

Pearl R., 1928

Masoro EJ, Austad SN., 2006
Calculation of the intrinsic rate of natural increase, r, with Rhabditis marina Bastian 1865 (Nematoda)
Vranken G, Heip C., 1983
Sirtuin activators mimic caloric restriction and delay ageing in metazoans.
Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D., Nature 430(7000), 2004
PMID: 15254550
Dominance and overdominance of mildly deleterious induced mutations for fitness traits in Caenorhabditis elegans.
Peters AD, Halligan DL, Whitlock MC, Keightley PD., Genetics 165(2), 2003
PMID: 14573472
Testing life-history pleiotropy in Caenorhabditis elegans.
Knight CG, Azevedo RB, Leroi AM., Evolution 55(9), 2001
PMID: 11681734
Regulation of life-span by germ-line stem cells in Caenorhabditis elegans.
Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C., Science 295(5554), 2002
PMID: 11799246
Components and patterns in the behavior of the nematode Caenorhabditis elegans
Croll NA., 1975
Feeding and defecation
Avery L, Thomas JH., 1997

Roff DA., 1992
Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans.
Keightley PD, Caballero A., Proc. Natl. Acad. Sci. U.S.A. 94(8), 1997
PMID: 9108062
A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans
Chen JJ, Senturk D, Wang JL, Müller HG, Carey JR, Caswell H, Caswell-Chen EP., 2007
The disposable soma theory of aging
Kirkwood TBL., 1990
Predatory copepods can control nematode populations: A functional-response experiment with Eucyclops subterraneus and bacterivorous nematodes
Muschiol D, Markovic M, Threis I, Traunspurger W., 2008
The fitness effects of spontaneous mutations in Caenorhabditis elegans.
Vassilieva LL, Hook AM, Lynch M., Evolution 54(4), 2000
PMID: 11005291
Terumi Mukai and the riddle of deleterious mutation rates.
Keightley PD, Eyre-Walker A., Genetics 153(2), 1999
PMID: 10511536

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB


PMID: 19445697
PubMed | Europe PMC

Suchen in

Google Scholar