Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach

Elsner L (1994)
Linear algebra and its applications 208-209: 83-95.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
It is shown that recent perturbation theorems for the joint spectrum of commuting matrices, which have been proved using Clifford-algebra tools, can be obtained and improved by classical means, as used in the case of the standard eigenvalue problem.
Erscheinungsjahr
1994
Zeitschriftentitel
Linear algebra and its applications
Band
208-209
Seite(n)
83-95
ISSN
0024-3795
Page URI
https://pub.uni-bielefeld.de/record/1780851

Zitieren

Elsner L. Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach. Linear algebra and its applications. 1994;208-209:83-95.
Elsner, L. (1994). Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach. Linear algebra and its applications, 208-209, 83-95. https://doi.org/10.1016/0024-3795(94)90433-2
Elsner, Ludwig. 1994. “Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach”. Linear algebra and its applications 208-209: 83-95.
Elsner, L. (1994). Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach. Linear algebra and its applications 208-209, 83-95.
Elsner, L., 1994. Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach. Linear algebra and its applications, 208-209, p 83-95.
L. Elsner, “Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach”, Linear algebra and its applications, vol. 208-209, 1994, pp. 83-95.
Elsner, L.: Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach. Linear algebra and its applications. 208-209, 83-95 (1994).
Elsner, Ludwig. “Perturbation theorems for the joint spectrum of commuting matrices: a conservative approach”. Linear algebra and its applications 208-209 (1994): 83-95.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:35Z
MD5 Prüfsumme
960db0ae7f15767c67bd572543edddee


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar