Spectral radii of certain iteration matrices and cycle means of digraphs
Elsner L, Hershkowitz D, Schneider H (1993)
Linear algebra and its applications 192: 61-81.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Elsner, LudwigUniBi;
Hershkowitz, Daniel;
Schneider, Hans
Einrichtung
Abstract / Bemerkung
Motivated by questions arising in the study of asynchronous iterative methods for solving linear systems, we consider the spectral radius of products of certain one cycle matrices. The spectral radius of a matrix in our class is a monotonic increasing function of the length of the cycle of the matrix, but this is known to be false for products of such matrices. The thrust of our investigation is to determine sufficient conditions under which the spectral radius of the product increases (decreases) when the lengths of the cycles of the factors increase (decrease). We also find sufficient conditions for the spectral radius of the product to be independent of the order of the factors. Our chief tool is an auxiliary directed weighted graph whose cycle means determine the eigenvalues of the matrix product, and our main results are stated in terms of the maximal cycle mean of this graph.
Erscheinungsjahr
1993
Zeitschriftentitel
Linear algebra and its applications
Band
192
Seite(n)
61-81
ISSN
0024-3795
Page URI
https://pub.uni-bielefeld.de/record/1780847
Zitieren
Elsner L, Hershkowitz D, Schneider H. Spectral radii of certain iteration matrices and cycle means of digraphs. Linear algebra and its applications. 1993;192:61-81.
Elsner, L., Hershkowitz, D., & Schneider, H. (1993). Spectral radii of certain iteration matrices and cycle means of digraphs. Linear algebra and its applications, 192, 61-81. https://doi.org/10.1016/0024-3795(93)90236-H
Elsner, Ludwig, Hershkowitz, Daniel, and Schneider, Hans. 1993. “Spectral radii of certain iteration matrices and cycle means of digraphs”. Linear algebra and its applications 192: 61-81.
Elsner, L., Hershkowitz, D., and Schneider, H. (1993). Spectral radii of certain iteration matrices and cycle means of digraphs. Linear algebra and its applications 192, 61-81.
Elsner, L., Hershkowitz, D., & Schneider, H., 1993. Spectral radii of certain iteration matrices and cycle means of digraphs. Linear algebra and its applications, 192, p 61-81.
L. Elsner, D. Hershkowitz, and H. Schneider, “Spectral radii of certain iteration matrices and cycle means of digraphs”, Linear algebra and its applications, vol. 192, 1993, pp. 61-81.
Elsner, L., Hershkowitz, D., Schneider, H.: Spectral radii of certain iteration matrices and cycle means of digraphs. Linear algebra and its applications. 192, 61-81 (1993).
Elsner, Ludwig, Hershkowitz, Daniel, and Schneider, Hans. “Spectral radii of certain iteration matrices and cycle means of digraphs”. Linear algebra and its applications 192 (1993): 61-81.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:35Z
MD5 Prüfsumme
d123658fd221d76e2cfe889d724e4626
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in