Two proofs of Pinsker's conjecture concerning arbitrarily varying channels

Ahlswede R, Cai N (1991)
IEEE transactions on information theory 37(6): 1647-1649.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Erscheinungsjahr
1991
Zeitschriftentitel
IEEE transactions on information theory
Band
37
Ausgabe
6
Seite(n)
1647-1649
ISSN
0018-9448
Page URI
https://pub.uni-bielefeld.de/record/1780482

Zitieren

Ahlswede R, Cai N. Two proofs of Pinsker's conjecture concerning arbitrarily varying channels. IEEE transactions on information theory. 1991;37(6):1647-1649.
Ahlswede, R., & Cai, N. (1991). Two proofs of Pinsker's conjecture concerning arbitrarily varying channels. IEEE transactions on information theory, 37(6), 1647-1649. doi:10.1109/18.104326
Ahlswede, R., and Cai, N. (1991). Two proofs of Pinsker's conjecture concerning arbitrarily varying channels. IEEE transactions on information theory 37, 1647-1649.
Ahlswede, R., & Cai, N., 1991. Two proofs of Pinsker's conjecture concerning arbitrarily varying channels. IEEE transactions on information theory, 37(6), p 1647-1649.
R. Ahlswede and N. Cai, “Two proofs of Pinsker's conjecture concerning arbitrarily varying channels”, IEEE transactions on information theory, vol. 37, 1991, pp. 1647-1649.
Ahlswede, R., Cai, N.: Two proofs of Pinsker's conjecture concerning arbitrarily varying channels. IEEE transactions on information theory. 37, 1647-1649 (1991).
Ahlswede, Rudolf, and Cai, Ning. “Two proofs of Pinsker's conjecture concerning arbitrarily varying channels”. IEEE transactions on information theory 37.6 (1991): 1647-1649.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:33Z
MD5 Prüfsumme
234754ad1ac50d4a266e45c4b4ec6dee

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar