Block scaling with optimal Euclidean condition
Elsner L (1984)
Linear algebra and its applications 58(Apr): 69-73.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
Let M denote the set of all complex n×n matrices whose columns span certain given linear subspaces. The minimal Euclidean condition number of matrices in M is given in terms of the canonical angles between the linear subspaces, and optimal matrices in M are described. The result is also stated in terms of norms of certain projections.
Erscheinungsjahr
1984
Zeitschriftentitel
Linear algebra and its applications
Band
58
Ausgabe
Apr
Seite(n)
69-73
ISSN
0024-3795
Page URI
https://pub.uni-bielefeld.de/record/1780352
Zitieren
Elsner L. Block scaling with optimal Euclidean condition. Linear algebra and its applications. 1984;58(Apr):69-73.
Elsner, L. (1984). Block scaling with optimal Euclidean condition. Linear algebra and its applications, 58(Apr), 69-73. https://doi.org/10.1016/0024-3795(84)90204-0
Elsner, Ludwig. 1984. “Block scaling with optimal Euclidean condition”. Linear algebra and its applications 58 (Apr): 69-73.
Elsner, L. (1984). Block scaling with optimal Euclidean condition. Linear algebra and its applications 58, 69-73.
Elsner, L., 1984. Block scaling with optimal Euclidean condition. Linear algebra and its applications, 58(Apr), p 69-73.
L. Elsner, “Block scaling with optimal Euclidean condition”, Linear algebra and its applications, vol. 58, 1984, pp. 69-73.
Elsner, L.: Block scaling with optimal Euclidean condition. Linear algebra and its applications. 58, 69-73 (1984).
Elsner, Ludwig. “Block scaling with optimal Euclidean condition”. Linear algebra and its applications 58.Apr (1984): 69-73.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:32Z
MD5 Prüfsumme
daeac0379653def4d34890e37d4435ee
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in