The category of good modules over a quasi-hereditary algebra has almost split sequences

Ringel CM (1989) Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26.
Bielefeld.

Monographie | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Let A be a quasi-hereditary algebra. The aim of this paper is to show that the category of all A-modules with good filtrations is functorially finite in A-mod, thus it has (relative) almost split sequences. This follows from a general result dealing with arbitrary artin algebras. For quasi-hereditary algebras, we will consider the relation between four rather interesting subcategories, one of them being the category of modules with good filtrations, and we will exhibit one particular module which is both a tilting and a cotilting module. It turns out that the quasi-hereditary algebras always come in pairs.
Erscheinungsjahr
1989
Serientitel
Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26
Seite(n)
17
Page URI
https://pub.uni-bielefeld.de/record/1780235

Zitieren

Ringel CM. The category of good modules over a quasi-hereditary algebra has almost split sequences. Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26. Bielefeld; 1989.
Ringel, C. M. (1989). The category of good modules over a quasi-hereditary algebra has almost split sequences (Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26). Bielefeld.
Ringel, Claus Michael. 1989. The category of good modules over a quasi-hereditary algebra has almost split sequences. Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26. Bielefeld.
Ringel, C. M. (1989). The category of good modules over a quasi-hereditary algebra has almost split sequences. Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26, Bielefeld.
Ringel, C.M., 1989. The category of good modules over a quasi-hereditary algebra has almost split sequences, Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26, Bielefeld.
C.M. Ringel, The category of good modules over a quasi-hereditary algebra has almost split sequences, Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26, Bielefeld: 1989.
Ringel, C.M.: The category of good modules over a quasi-hereditary algebra has almost split sequences. Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26. Bielefeld (1989).
Ringel, Claus Michael. The category of good modules over a quasi-hereditary algebra has almost split sequences. Bielefeld, 1989. Preprint / Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik ; 89,26.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:31Z
MD5 Prüfsumme
b9e25fd50276db35a0b9e4770df03acd


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar