The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences

Ringel CM (1991)
Mathematische Zeitschrift 208(1): 209-223.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Erscheinungsjahr
1991
Zeitschriftentitel
Mathematische Zeitschrift
Band
208
Ausgabe
1
Seite(n)
209-223
ISSN
0025-5874
eISSN
1432-1823
Page URI
https://pub.uni-bielefeld.de/record/1775649

Zitieren

Ringel CM. The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences. Mathematische Zeitschrift. 1991;208(1):209-223.
Ringel, C. M. (1991). The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences. Mathematische Zeitschrift, 208(1), 209-223. doi:10.1007/BF02571521
Ringel, C. M. (1991). The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences. Mathematische Zeitschrift 208, 209-223.
Ringel, C.M., 1991. The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences. Mathematische Zeitschrift, 208(1), p 209-223.
C.M. Ringel, “The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences”, Mathematische Zeitschrift, vol. 208, 1991, pp. 209-223.
Ringel, C.M.: The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences. Mathematische Zeitschrift. 208, 209-223 (1991).
Ringel, Claus Michael. “The category of modules with good filtrations over a quasi-heriditary algebra has almost split sequences”. Mathematische Zeitschrift 208.1 (1991): 209-223.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:19Z
MD5 Prüfsumme
28fe0947e19b5464439fa98085859c10