Fitting ordinary differential equations to chaotic data
Baake E, Baake M, Bock HG, Briggs KM (1992)
Physical Review A 45(8): 5524-5529.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Baake, EllenUniBi;
Baake, MichaelUniBi;
Bock, H. G.;
Briggs, K. M.
Einrichtung
Abstract / Bemerkung
We address the problem of estimating parameters in systems of ordinary differential equations which give rise to chaotic time series. We claim that the problem is naturally tackled by boundary value problem methods. The power of this approach is demonstrated by various examples with ideal as well as noisy data. In particular, Lyapunov exponents can be computed accurately from time series much shorter than those required by previous methods.
Erscheinungsjahr
1992
Zeitschriftentitel
Physical Review A
Band
45
Ausgabe
8
Seite(n)
5524-5529
ISSN
1050-2947
eISSN
1094-1622
Page URI
https://pub.uni-bielefeld.de/record/1775599
Zitieren
Baake E, Baake M, Bock HG, Briggs KM. Fitting ordinary differential equations to chaotic data. Physical Review A. 1992;45(8):5524-5529.
Baake, E., Baake, M., Bock, H. G., & Briggs, K. M. (1992). Fitting ordinary differential equations to chaotic data. Physical Review A, 45(8), 5524-5529. https://doi.org/10.1103/PhysRevA.45.5524
Baake, Ellen, Baake, Michael, Bock, H. G., and Briggs, K. M. 1992. “Fitting ordinary differential equations to chaotic data”. Physical Review A 45 (8): 5524-5529.
Baake, E., Baake, M., Bock, H. G., and Briggs, K. M. (1992). Fitting ordinary differential equations to chaotic data. Physical Review A 45, 5524-5529.
Baake, E., et al., 1992. Fitting ordinary differential equations to chaotic data. Physical Review A, 45(8), p 5524-5529.
E. Baake, et al., “Fitting ordinary differential equations to chaotic data”, Physical Review A, vol. 45, 1992, pp. 5524-5529.
Baake, E., Baake, M., Bock, H.G., Briggs, K.M.: Fitting ordinary differential equations to chaotic data. Physical Review A. 45, 5524-5529 (1992).
Baake, Ellen, Baake, Michael, Bock, H. G., and Briggs, K. M. “Fitting ordinary differential equations to chaotic data”. Physical Review A 45.8 (1992): 5524-5529.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:18Z
MD5 Prüfsumme
c59d969294f74556e3955419fb137891
Daten bereitgestellt von European Bioinformatics Institute (EBI)
24 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Hybrid modeling and prediction of dynamical systems.
Hamilton F, Lloyd AL, Flores KB., PLoS Comput Biol 13(7), 2017
PMID: 28692642
Hamilton F, Lloyd AL, Flores KB., PLoS Comput Biol 13(7), 2017
PMID: 28692642
Deterministic inference for stochastic systems using multiple shooting and a linear noise approximation for the transition probabilities.
Zimmer C, Sahle S., IET Syst Biol 9(5), 2015
PMID: 26405142
Zimmer C, Sahle S., IET Syst Biol 9(5), 2015
PMID: 26405142
Forecasting the future: is it possible for adiabatically time-varying nonlinear dynamical systems?
Yang R, Lai YC, Grebogi C., Chaos 22(3), 2012
PMID: 23020458
Yang R, Lai YC, Grebogi C., Chaos 22(3), 2012
PMID: 23020458
Structure identification based on steady-state control: experimental results and applications.
Frasca M, Yu D, Fortuna L., Phys Rev E Stat Nonlin Soft Matter Phys 81(2 pt 2), 2010
PMID: 20365643
Frasca M, Yu D, Fortuna L., Phys Rev E Stat Nonlin Soft Matter Phys 81(2 pt 2), 2010
PMID: 20365643
Monte Carlo method for adaptively estimating the unknown parameters and the dynamic state of chaotic systems.
Mariño IP, Míguez J, Meucci R., Phys Rev E Stat Nonlin Soft Matter Phys 79(5 pt 2), 2009
PMID: 19518547
Mariño IP, Míguez J, Meucci R., Phys Rev E Stat Nonlin Soft Matter Phys 79(5 pt 2), 2009
PMID: 19518547
Spatiotemporal system identification on nonperiodic domains using Chebyshev spectral operators and system reduction algorithms.
Khanmohamadi O, Xu D., Chaos 19(3), 2009
PMID: 19791997
Khanmohamadi O, Xu D., Chaos 19(3), 2009
PMID: 19791997
Detecting anomalous phase synchronization from time series.
Tokuda IT, Kumar Dana S, Kurths J., Chaos 18(2), 2008
PMID: 18601500
Tokuda IT, Kumar Dana S, Kurths J., Chaos 18(2), 2008
PMID: 18601500
Spatiotemporal system reconstruction using Fourier spectral operators and structure selection techniques.
Xu D, Khanmohamadi O., Chaos 18(4), 2008
PMID: 19123632
Xu D, Khanmohamadi O., Chaos 18(4), 2008
PMID: 19123632
Inferring phase equations from multivariate time series.
Tokuda IT, Jain S, Kiss IZ, Hudson JL., Phys Rev Lett 99(6), 2007
PMID: 17930830
Tokuda IT, Jain S, Kiss IZ, Hudson JL., Phys Rev Lett 99(6), 2007
PMID: 17930830
Building dynamical models from data and prior knowledge: the case of the first period-doubling bifurcation.
Aguirre LA, Furtado EC., Phys Rev E Stat Nonlin Soft Matter Phys 76(4 pt 2), 2007
PMID: 17995094
Aguirre LA, Furtado EC., Phys Rev E Stat Nonlin Soft Matter Phys 76(4 pt 2), 2007
PMID: 17995094
Monte Carlo method for multiparameter estimation in coupled chaotic systems.
Mariño IP, Míguez J., Phys Rev E Stat Nonlin Soft Matter Phys 76(5 pt 2), 2007
PMID: 18233798
Mariño IP, Míguez J., Phys Rev E Stat Nonlin Soft Matter Phys 76(5 pt 2), 2007
PMID: 18233798
Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
Xu D, Lu F., Chaos 16(4), 2006
PMID: 17199387
Xu D, Lu F., Chaos 16(4), 2006
PMID: 17199387
On parameter estimation of chaotic systems via symbolic time-series analysis.
Piccardi C., Chaos 16(4), 2006
PMID: 17199393
Piccardi C., Chaos 16(4), 2006
PMID: 17199393
Adaptive approximation method for joint parameter estimation and identical synchronization of chaotic systems.
Mariño IP, Míguez J., Phys Rev E Stat Nonlin Soft Matter Phys 72(5 pt 2), 2005
PMID: 16383795
Mariño IP, Míguez J., Phys Rev E Stat Nonlin Soft Matter Phys 72(5 pt 2), 2005
PMID: 16383795
Manipulation of surface reaction dynamics by global pressure and local temperature control: a model study.
Lebiedz D, Brandt-Pollmann U., Phys Rev E Stat Nonlin Soft Matter Phys 70(5 pt 1), 2004
PMID: 15600630
Lebiedz D, Brandt-Pollmann U., Phys Rev E Stat Nonlin Soft Matter Phys 70(5 pt 1), 2004
PMID: 15600630
Choice of dynamical variables for global reconstruction of model equations from time series.
Smirnov DA, Bezruchko BP, Seleznev YP., Phys Rev E Stat Nonlin Soft Matter Phys 65(2 pt 2), 2002
PMID: 11863630
Smirnov DA, Bezruchko BP, Seleznev YP., Phys Rev E Stat Nonlin Soft Matter Phys 65(2 pt 2), 2002
PMID: 11863630
Constructing nonautonomous differential equations from experimental time series.
Bezruchko BP, Smirnov DA., Phys Rev E Stat Nonlin Soft Matter Phys 63(1 pt 2), 2001
PMID: 11304335
Bezruchko BP, Smirnov DA., Phys Rev E Stat Nonlin Soft Matter Phys 63(1 pt 2), 2001
PMID: 11304335
Nonlinear dynamics and chaos theory: concepts and applications relevant to pharmacodynamics.
Dokoumetzidis A, Iliadis A, Macheras P., Pharm Res 18(4), 2001
PMID: 11451026
Dokoumetzidis A, Iliadis A, Macheras P., Pharm Res 18(4), 2001
PMID: 11451026
Role of transient processes for reconstruction of model equations from time series.
Bezruchko BP, Dikanev TV, Smirnov DA., Phys Rev E Stat Nonlin Soft Matter Phys 64(3 pt 2), 2001
PMID: 11580425
Bezruchko BP, Dikanev TV, Smirnov DA., Phys Rev E Stat Nonlin Soft Matter Phys 64(3 pt 2), 2001
PMID: 11580425
Parameter estimation in spatially extended systems: the Karhunen-Lóeve and Galerkin multiple shooting approach.
Ghosh A, Kumar VR, Kulkarni BD., Phys Rev E Stat Nonlin Soft Matter Phys 64(5 pt 2), 2001
PMID: 11736069
Ghosh A, Kumar VR, Kulkarni BD., Phys Rev E Stat Nonlin Soft Matter Phys 64(5 pt 2), 2001
PMID: 11736069
A new concept for EEG/MEG signal analysis: detection of interacting spatial modes.
Uhl C, Kruggel F, Opitz B, Yves von Cramon D., Hum Brain Mapp 6(3), 1998
PMID: 9673669
Uhl C, Kruggel F, Opitz B, Yves von Cramon D., Hum Brain Mapp 6(3), 1998
PMID: 9673669
Synchronization and control of spatiotemporal chaos using time-series data from local regions.
Parekh N, Ravi Kumar V, Kulkarni BD., Chaos 8(1), 1998
PMID: 12779733
Parekh N, Ravi Kumar V, Kulkarni BD., Chaos 8(1), 1998
PMID: 12779733
Estimating model parameters from time series by autosynchronization.
Parlitz U., Phys Rev Lett 76(8), 1996
PMID: 10061669
Parlitz U., Phys Rev Lett 76(8), 1996
PMID: 10061669
Analysis of spatiotemporal signals of complex systems.
Uhl C, Friedrich R, Haken H., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(5), 1995
PMID: 9963098
Uhl C, Friedrich R, Haken H., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(5), 1995
PMID: 9963098
13 References
Daten bereitgestellt von Europe PubMed Central.
Eckmann, Rev. Mod. Phys. 57(), 1985
Predictability of human EEG: a dynamical approach.
Gallez D, Babloyantz A., Biol Cybern 64(5), 1991
PMID: 2049414
Gallez D, Babloyantz A., Biol Cybern 64(5), 1991
PMID: 2049414
Takens, 1981
Sauer, J. Stat. Phys. 65(), 1991
Noise reduction in dynamical systems.
Kostelich EJ, Yorke JA., Phys Rev A Gen Phys 38(3), 1988
PMID: 9900555
Kostelich EJ, Yorke JA., Phys Rev A Gen Phys 38(3), 1988
PMID: 9900555
Farmer, Physica D 47(), 1991
Bock, 1986
Bock, 1988
Sensitive dependence on parameters in nonlinear dynamics.
Farmer JD., Phys. Rev. Lett. 55(4), 1985
PMID: 10032328
Farmer JD., Phys. Rev. Lett. 55(4), 1985
PMID: 10032328
Hammel, % true orbits. Bull. AMS 19(), 1988
Erdi, 1989
Zeng, % Time Series of Low Precision. Phys. Rev. Lett. 66(), 1991
Wolf, Physica D 16(), 1985
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 9907650
PubMed | Europe PMC
Suchen in