Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers

Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E (1994)
Biophysical Chemistry 52(3): 267-274.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Spassova, M.; Tsoneva, I.; Petrov, A. G.; Petkova, J. I.; Neumann, EberhardUniBi
Abstract / Bemerkung
Planar lipid bilayers formed from monolayers of diphytanoyl lecithin (DPhL) were found to interact with plasmid DNA (5.6 kbp; M(r) = 3.7 X 10(6)) leading to an increase in the conductance of the membrane. The association of DNA with a lipid bilayer greatly facilitates the transport of the small ions of the main salt KCl. The appearance of long-lived current levels, for instance, of 27.6 pA at V-m = +60 mV membrane voltage, where the actual contact (adsorption) is electrophoretically enhanced, suggests a locally conductive DNA/lipid interaction zone where parts of the DNA strand may be transiently inserted in the bilayer, leaving other parts of the DNA probably protruding out from the outer surface of the bilayer. At V-m = -60 mV, where DNA can be electrophoretically moved away from the membrane, the membrane current is practically zero. This current asymmetry is initially also observed at higher voltages, for instance at 200 mV. However, if the voltage sign (V-m = +200 mV) is changed after a transient positive current (approximate to 15 pA) was observed, there is also now (at V-m = -200 mV) a finite negative current at the negative membrane voltage. Thus, it appears that at V-m = +200 mV the adsorbed parts of the polyelectrolyte DNA are not only transiently inserted in, but actually also electrophoretically pulled through, the porous zones onto the other membrane side leaving the bilayer structure basically intact. These data provide direct electric evidence for the electrophoretic transport of a highly charged and hydrated macromolecule, probably together with the associated gegen-ions, through the thin hydrophobic film of the lipid bilayer.
Stichworte
DIPHYTANOYL LECITHIN MONOLAYERS; PLASMID DNA; LONG-LIVED CONDUCTIVE STATE; PATCH CLAMP; ELECTROPHORETIC DNA TRANSFER
Erscheinungsjahr
1994
Zeitschriftentitel
Biophysical Chemistry
Band
52
Ausgabe
3
Seite(n)
267-274
ISSN
0301-4622
Page URI
https://pub.uni-bielefeld.de/record/1774574

Zitieren

Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E. Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry. 1994;52(3):267-274.
Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., & Neumann, E. (1994). Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry, 52(3), 267-274. https://doi.org/10.1016/0301-4622(94)00097-4
Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., and Neumann, Eberhard. 1994. “Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers”. Biophysical Chemistry 52 (3): 267-274.
Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., and Neumann, E. (1994). Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry 52, 267-274.
Spassova, M., et al., 1994. Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry, 52(3), p 267-274.
M. Spassova, et al., “Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers”, Biophysical Chemistry, vol. 52, 1994, pp. 267-274.
Spassova, M., Tsoneva, I., Petrov, A.G., Petkova, J.I., Neumann, E.: Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers. Biophysical Chemistry. 52, 267-274 (1994).
Spassova, M., Tsoneva, I., Petrov, A. G., Petkova, J. I., and Neumann, Eberhard. “Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers”. Biophysical Chemistry 52.3 (1994): 267-274.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:12Z
MD5 Prüfsumme
5a17008f11e66688d8f8031e2b48c349


19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ultrastructural Analysis of Vesicular Transport in Electrotransfection.
Wang L, Miller SE, Yuan F., Microsc Microanal 24(5), 2018
PMID: 30334512
Gene Electrotransfer: A Mechanistic Perspective.
Rosazza C, Meglic SH, Zumbusch A, Rols MP, Miklavcic D., Curr Gene Ther 16(2), 2016
PMID: 27029943
Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR.
Chabot S, Teissié J, Golzio M., Adv Drug Deliv Rev 81(), 2015
PMID: 24819217
Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation.
Satkauskas S, Ruzgys P, Venslauskas MS., Expert Opin Biol Ther 12(3), 2012
PMID: 22339479
Bioelectric applications for treatment of melanoma.
Beebe SJ, Schoenbach KH, Heller R., Cancers (Basel) 2(3), 2010
PMID: 24281185
What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues.
Escoffre JM, Portet T, Wasungu L, Teissié J, Dean D, Rols MP., Mol Biotechnol 41(3), 2009
PMID: 19016008
Gene electrotransfer: from biophysical mechanisms to in vivo applications : Part 1- Biophysical mechanisms.
Escoffre JM, Mauroy C, Portet T, Wasungu L, Rosazza C, Gilbart Y, Mallet L, Bellard E, Golzio M, Rols MP, Teissié J., Biophys Rev 1(4), 2009
PMID: 28510029
Physiological effects of high- and low-voltage pulse combinations for gene electrotransfer in muscle.
Hojman P, Gissel H, Andre FM, Cournil-Henrionnet C, Eriksen J, Gehl J, Mir LM., Hum Gene Ther 19(11), 2008
PMID: 19866489
Hybridization of DNA at the surface of phospholipid monolayers. Effect of orientation of oligonucleotide chains.
Hianik T, Vitovic P, Humenik D, Andreev SY, Oretskaya TS, Hall EA, Vadgama P., Bioelectrochemistry 59(1-2), 2003
PMID: 12699817
Digression on membrane electroporation for drug and gene delivery.
Neumann E, Kakorin S., Technol Cancer Res Treat 1(5), 2002
PMID: 12625758
Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
Interactions of DNA with giant liposomes.
Angelova MI, Tsoneva I., Chem Phys Lipids 101(1), 1999
PMID: 10810930
Sphingosine-mediated electroporative DNA transfer through lipid bilayers.
Hristova NI, Tsoneva I, Neumann E., FEBS Lett 415(1), 1997
PMID: 9326374
Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys Chem 58(1-2), 1996
PMID: 8679914
Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.
Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T., Biophys J 71(2), 1996
PMID: 8842225

19 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1992

Neumann, 1989

Neumann, Bioelectrochem. Bioenerg. 28(), 1992
Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708

Klenchin, Biol. Mem. 7 (), 1994

Spassova, 1993
Yeast/E. coli shuttle vectors with multiple unique restriction sites.
Hill JE, Myers AM, Koerner TJ, Tzagoloff A., Yeast 2(3), 1986
PMID: 3333305

Maniatis, 1982
Phospholipid bilayers made from monolayers on patch-clamp pipettes.
Coronado R, Latorre R., Biophys. J. 43(2), 1983
PMID: 6193818

Schuerholz, FEBS Letters 152(), 1983

Petrov, Eur. Biophys. J. 20(), 1991

Sakmann, 1983

Sansom, J. Theoret. Biol. 114(), 1990
Interaction of polynucleotides with natural and model membranes.
Budker VG, Godovikov AA, Naumova LP, Slepneva IA., Nucleic Acids Res. 8(11), 1980
PMID: 6160462

Katchalsky, Pure Appl. Chem. 26(), 1971
Stochastic model for electric field-induced membrane pores. Electroporation.
Sugar IP, Neumann E., Biophys. Chem. 19(3), 1984
PMID: 6722274

Hille, 1984
Reversible electrical breakdown of lipid bilayers: formation and evolution of pores.
Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI., Biochim. Biophys. Acta 940(2), 1988
PMID: 2453213
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 7999976
PubMed | Europe PMC

Suchen in

Google Scholar