Stochastic model for electric field-induced membrane pores electroporation

Sugar IP, Neumann E (1984)
Biophysical Chemistry 19(3): 211-225.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor/in
;
Abstract / Bemerkung
Electric impulses (1–20 kV cm-1, 1-5 [mu]) cause transient structural changes in biological membranes and lipid bilayers. leading to apparently reversible pore formation (electroporation) with cross-membrane material flow and, if two membranes are in contact, to irreversible membrane fusion (electrofusion). The fundamental process operative in electroporation and electrofusion is treated in terms of a periodic lipid block model, a block being a nearest-neighbour pair of lipid molecules in either of two states: (i) the polar head group in the bilayer plane or (ii) facing the centre of a pore (or defect site). The number of blocks in the pore wall is the stochastic variable of the model describing pore size and stability. The Helmholtz free energy function characterizing the transition probabilities of the various pore states contains the surface energies of the pore wall and the planar bilayer and. if an electric field is present, also a dielectric polarization term (dominated by the polarization of the water layer adjacent to the pore wall). Assuming a Poisson process the average number of blocks in a pore wall is given by the solution of a non-linear differential equation. At subcritical electric fields the average pore size is stationary and very small. At supercritical field strengths the pore radius increases and reaching a critical pore size, the membrane ruptures (dielectric breakdown). If, however, the electric field is switched off. before the critical pore radius is reached, the pore apparently completely reseals to the closed bilayer configuration (reversible electroporation).
Stichworte
Electric field; Membrane pore; Lipid bilayer; Electroporation
Erscheinungsjahr
1984
Zeitschriftentitel
Biophysical Chemistry
Band
19
Ausgabe
3
Seite(n)
211-225
ISSN
0301-4622
Page URI
https://pub.uni-bielefeld.de/record/1774503

Zitieren

Sugar IP, Neumann E. Stochastic model for electric field-induced membrane pores electroporation. Biophysical Chemistry. 1984;19(3):211-225.
Sugar, I. P., & Neumann, E. (1984). Stochastic model for electric field-induced membrane pores electroporation. Biophysical Chemistry, 19(3), 211-225. doi:10.1016/0301-4622(84)87003-9
Sugar, I. P., and Neumann, E. (1984). Stochastic model for electric field-induced membrane pores electroporation. Biophysical Chemistry 19, 211-225.
Sugar, I.P., & Neumann, E., 1984. Stochastic model for electric field-induced membrane pores electroporation. Biophysical Chemistry, 19(3), p 211-225.
I.P. Sugar and E. Neumann, “Stochastic model for electric field-induced membrane pores electroporation”, Biophysical Chemistry, vol. 19, 1984, pp. 211-225.
Sugar, I.P., Neumann, E.: Stochastic model for electric field-induced membrane pores electroporation. Biophysical Chemistry. 19, 211-225 (1984).
Sugar, Istvan P., and Neumann, Eberhard. “Stochastic model for electric field-induced membrane pores electroporation”. Biophysical Chemistry 19.3 (1984): 211-225.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:11Z
MD5 Prüfsumme
9ee04bdef33cb08fff2816509613d2de

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 1508393
PubMed | Europe PMC

Suchen in

Google Scholar