Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands

Nolte H-J, Rosenberry TL, Neumann E (1980)
Biochemistry 19(16): 3705-3711.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ;
Erscheinungsjahr
Zeitschriftentitel
Biochemistry
Band
19
Ausgabe
16
Seite(n)
3705-3711
ISSN
eISSN
PUB-ID

Zitieren

Nolte H-J, Rosenberry TL, Neumann E. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry. 1980;19(16):3705-3711.
Nolte, H. - J., Rosenberry, T. L., & Neumann, E. (1980). Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry, 19(16), 3705-3711. doi:10.1021/bi00557a011
Nolte, H. - J., Rosenberry, T. L., and Neumann, E. (1980). Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry 19, 3705-3711.
Nolte, H.-J., Rosenberry, T.L., & Neumann, E., 1980. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry, 19(16), p 3705-3711.
H.-J. Nolte, T.L. Rosenberry, and E. Neumann, “Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands”, Biochemistry, vol. 19, 1980, pp. 3705-3711.
Nolte, H.-J., Rosenberry, T.L., Neumann, E.: Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry. 19, 3705-3711 (1980).
Nolte, Hans-Jürgen, Rosenberry, Terrone L., and Neumann, Eberhard. “Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands”. Biochemistry 19.16 (1980): 3705-3711.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
1970-01-01T00:00:00Z

61 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity.
Cai J, Wang B, Li J, Chen Z, Rao M, Muyldermans S, Hua X, Xie X, Wang H, Yang J, Xu Z, Shen Y, Sun Y., Int J Mol Sci 19(11), 2018
PMID: 30373269
Why is Aged Acetylcholinesterase So Difficult to Reactivate?
Quinn DM, Topczewski J, Yasapala N, Lodge A., Molecules 22(9), 2017
PMID: 28869561
In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors.
Müntze GM, Pouokam E, Steidle J, Schäfer W, Sasse A, Röth K, Diener M, Eickhoff M., Biosens Bioelectron 77(), 2016
PMID: 26547432
High efficiency acetylcholinesterase immobilization on DNA aptamer modified surfaces.
Chumphukam O, Le TT, Cass AE., Molecules 19(4), 2014
PMID: 24756130
Characterization of catalytic efficiency parameters of brain cholinesterases in tropical fish.
de Assis CR, Linhares AG, Oliveira VM, França RC, Santos JF, Marcuschi M, Carvalho EV, Bezerra RS, Carvalho LB., Fish Physiol Biochem 40(6), 2014
PMID: 24980148
Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.
Goldman LM, Amyes TL, Goryanova B, Gerlt JA, Richard JP., J Am Chem Soc 136(28), 2014
PMID: 24958125
Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling.
Berg L, Andersson CD, Artursson E, Hörnberg A, Tunemalm AK, Linusson A, Ekström F., PLoS One 6(11), 2011
PMID: 22140425
Acetylcholinesterase: from 3D structure to function.
Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL., Chem Biol Interact 187(1-3), 2010
PMID: 20138030
Rate theories for biologists.
Zhou HX., Q Rev Biophys 43(2), 2010
PMID: 20691138
Kinetics of human serum butyrylcholinesterase inhibition by a novel experimental Alzheimer therapeutic, dihydrobenzodioxepine cymserine.
Kamal MA, Klein P, Luo W, Li Y, Holloway HW, Tweedie D, Greig NH., Neurochem Res 33(5), 2008
PMID: 17985237
Selective enhancement of the activity of C-terminally truncated, but not intact, acetylcholinesterase.
Zimmermann M, Grösgen S, Westwell MS, Greenfield SA., J Neurochem 104(1), 2008
PMID: 17986217
Acetylcholinesterase: mechanisms of covalent inhibition of H447I mutant determined by computational analyses.
Cheng YH, Cheng XL, Radić Z, McCammon JA., Chem Biol Interact 175(1-3), 2008
PMID: 18657802
Docking and quantum mechanic studies on cholinesterases and their inhibitors.
Correa-Basurto J, Flores-Sandoval C, Marín-Cruz J, Rojo-Domínguez A, Espinoza-Fonseca LM, Trujillo-Ferrara JG., Eur J Med Chem 42(1), 2007
PMID: 17055616
Finite element analysis of the time-dependent Smoluchowski equation for acetylcholinesterase reaction rate calculations.
Cheng Y, Suen JK, Zhang D, Bond SD, Zhang Y, Song Y, Baker NA, Bajaj CL, Holst MJ, McCammon JA., Biophys J 92(10), 2007
PMID: 17307827
Acetylcholinesterases--the structural similarities and differences.
Wiesner J, Kriz Z, Kuca K, Jun D, Koca J., J Enzyme Inhib Med Chem 22(4), 2007
PMID: 17847707
Electrostatic steering at acetylcholine binding sites.
Meltzer RH, Thompson E, Soman KV, Song XZ, Ebalunode JO, Wensel TG, Briggs JM, Pedersen SE., Biophys J 91(4), 2006
PMID: 16751247
Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides.
Kuzmic P, Cregar L, Millis SZ, Goldman M., FEBS J 273(13), 2006
PMID: 16817854
Finite element solution of the steady-state Smoluchowski equation for rate constant calculations.
Song Y, Zhang Y, Shen T, Bajaj CL, McCammon JA, Baker NA., Biophys J 86(4), 2004
PMID: 15041644
Inhibition of acetylcholinesterase from Electrophorus electricus (L.) by tricyclic antidepressants.
Nunes-Tavares N, Nery da Matta A, Batista e Silva CM, Araújo GM, Louro SR, Hassón-Voloch A., Int J Biochem Cell Biol 34(9), 2002
PMID: 12009302
Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
Van Belle D, De Maria L, Iurcu G, Wodak SJ., J Mol Biol 298(4), 2000
PMID: 10788331
Theoretical and experimental investigations of electrostatic effects on acetylcholinesterase catalysis and inhibition.
Malany S, Baker N, Verweyst M, Medhekar R, Quinn DM, Velan B, Kronman C, Shafferman A., Chem Biol Interact 119-120(), 1999
PMID: 10421443
Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A.
Tara S, Helms V, Straatsma TP, McCammon JA., Biopolymers 50(4), 1999
PMID: 10423544
A modular treatment of molecular traffic through the active site of cholinesterase.
Botti SA, Felder CE, Lifson S, Sussman JL, Silman I., Biophys J 77(5), 1999
PMID: 10545346
Conformation gating as a mechanism for enzyme specificity.
Zhou HX, Wlodek ST, McCammon JA., Proc Natl Acad Sci U S A 95(16), 1998
PMID: 9689071
External and internal electrostatic potentials of cholinesterase models.
Felder CE, Botti SA, Lifson S, Silman I, Sussman JL., J Mol Graph Model 15(5), 1997
PMID: 9640563
Electrooptical measurements demonstrate a large permanent dipole moment associated with acetylcholinesterase.
Porschke D, Créminon C, Cousin X, Bon C, Sussman J, Silman I., Biophys J 70(4), 1996
PMID: 8785319
Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase.
Shafferman A, Ordentlich A, Barak D, Kronman C, Ber R, Bino T, Ariel N, Osman R, Velan B., EMBO J 13(15), 1994
PMID: 8062821
An electrostatic mechanism for substrate guidance down the aromatic gorge of acetylcholinesterase.
Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL., Proc Natl Acad Sci U S A 90(11), 1993
PMID: 8506359
Molecular and cellular biology of cholinesterases.
Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM., Prog Neurobiol 41(1), 1993
PMID: 8321908
Structure-function relationship studies in human cholinesterases reveal genomic origins for individual variations in cholinergic drug responses.
Loewenstein Y, Gnatt A, Neville LF, Zakut H, Soreq H., Prog Neuropsychopharmacol Biol Psychiatry 17(6), 1993
PMID: 8278601
Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE.
Neville LF, Gnatt A, Loewenstein Y, Seidman S, Ehrlich G, Soreq H., EMBO J 11(4), 1992
PMID: 1373381
Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein.
Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I., Science 253(5022), 1991
PMID: 1678899
Substrate-binding sites in acetylcholinesterase.
Hucho F, Järv J, Weise C., Trends Pharmacol Sci 12(11), 1991
PMID: 1796496
Reflections on the kinetics of substrate binding.
Gutfreund H., Biophys Chem 26(2-3), 1987
PMID: 3607224
Acetylcholinesterase as polyelectrolyte in reaction with cationic substrates.
Tóugu V, Pedak A, Kesvatera T, Aaviksaar A., FEBS Lett 225(1-2), 1987
PMID: 3691807
Chemical electric field effects in biological macromolecules.
Neumann E., Prog Biophys Mol Biol 47(3), 1986
PMID: 3544052
Ionic strength dependence of the inhibition of acetylcholinesterase activity by Al3+.
Sharp TR, Rosenberry TL., Biophys Chem 21(3-4), 1985
PMID: 3986284
Electric-field induced effects in acetylcholinesterase.
Fringeli UP, Hofer P., Neurochem Int 2C(), 1980
PMID: 20487782

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 7407068
PubMed | Europe PMC

Suchen in

Google Scholar