Visual afferences to flight steering muscles controlling optomotor responses of the fly

Egelhaaf M (1989)
Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology 165(6): 719-730.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
In tethered flying house-flies (Musca domestica) visually induced turning reactions were monitored under open-loop conditions simultaneously with the spike activity of four types of steering muscles (M.b1, M.b2, M.I1, M.III1). Specific behavioral response components are attributed to the activity of particular muscles. Compensatory optomotor turning reactions to large-field image displacements mainly occur when the stimulus pattern oscillates at low frequencies. In contrast, turning responses towards objects are preferentially induced by motion of relatively small stimuli at high oscillation frequencies. The different steering muscles seem to be functionally specialized in that they contribute to the control of these behavioral responses in different ways. The muscles I1, III1 and b2 are preferentially active during small-field motion at high oscillation frequencies. They are much less active during small-field motion at low oscillation frequencies and large-field motion at all oscillation frequencies which were tested. M.b2 is most extreme in this respect. These steering muscles thus mediate mainly turns towards objects. In contrast, M.b1 responds best during large-field motion at low oscillation frequencies and, thus, is appropriate to control compensatory optomotor responses. However, the activity of this muscle is also strongly modulated during small-field motion at high oscillation frequencies and, therefore, may be involved also in the control of turns towards objects. These functional specializations of the different steering muscles in mediating different behavioral response components are related to the properties of two parallel visual pathways that are selectively tuned to large-field and small-field motion, respectively.
Stichworte
Muscular system; Behavior; Neural coordination; Sensory reception
Erscheinungsjahr
1989
Zeitschriftentitel
Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology
Band
165
Ausgabe
6
Seite(n)
719-730
ISSN
0340-7594
eISSN
1432-1351
Page URI
https://pub.uni-bielefeld.de/record/1774138

Zitieren

Egelhaaf M. Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology. 1989;165(6):719-730.
Egelhaaf, M. (1989). Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology, 165(6), 719-730. https://doi.org/10.1007/BF00610871
Egelhaaf, Martin. 1989. “Visual afferences to flight steering muscles controlling optomotor responses of the fly”. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology 165 (6): 719-730.
Egelhaaf, M. (1989). Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology 165, 719-730.
Egelhaaf, M., 1989. Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology, 165(6), p 719-730.
M. Egelhaaf, “Visual afferences to flight steering muscles controlling optomotor responses of the fly”, Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology, vol. 165, 1989, pp. 719-730.
Egelhaaf, M.: Visual afferences to flight steering muscles controlling optomotor responses of the fly. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology. 165, 719-730 (1989).
Egelhaaf, Martin. “Visual afferences to flight steering muscles controlling optomotor responses of the fly”. Journal of Comparative Physiology, A: Sensory Neural and Behavioral Physiology 165.6 (1989): 719-730.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:10Z
MD5 Prüfsumme
a3820a0cbd1a6942c000a49fabcc34a7


17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Neural control and precision of flight muscle activation in Drosophila.
Lehmann FO, Bartussek J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(1), 2017
PMID: 27942807
In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor.
Walker SM, Schwyn DA, Mokso R, Wicklein M, Müller T, Doube M, Stampanoni M, Krapp HG, Taylor GK., PLoS Biol 12(3), 2014
PMID: 24667677
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Dynamic properties of large-field and small-field optomotor flight responses in Drosophila.
Duistermars BJ, Reiser MB, Zhu Y, Frye MA., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(7), 2007
PMID: 17551735
The mechanisms of lift enhancement in insect flight.
Lehmann FO., Naturwissenschaften 91(3), 2004
PMID: 15034660
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur J Neurosci 12(6), 2000
PMID: 10886355
Premotor descending neurons responding selectively to local visual stimuli in flies.
Gronenberg W, Strausfeld NJ., J Comp Neurol 316(1), 1992
PMID: 1374082

42 References

Daten bereitgestellt von Europe PubMed Central.


B, J Neurogenetics 3(), 1986

TS, J Comp Physiol 138(), 1980

TS, J Comp Physiol 140(), 1980

M, Biol Cybern 52(), 1985

M, Biol Cybern 52(), 1985

M, Biol Cybern 52(), 1985

M, J Comp Physiol A 161(), 1987
Visual course control in flies relies on neuronal computation of object and background motion.
Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C., Trends Neurosci. 11(8), 1988
PMID: 2469195

G, Biol Cybern 44(), 1982

KG, 1983

KG, Verh Dtsch Zool Ges 76(), 1983

KG, Biol Cybern 35(), 1979

K, Verh Dtsch Zool Ges 74(), 1981

K, Biol Cybern 45(), 1982

K, Biol Cybern 46(), 1982

K, 1984

K, 1989

K, Proc R Soc Lond B 219(), 1983

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

G, Zool Jb Physiol 76(), 1971

G, Zool Jb Physiol 76(), 1971

G, Biol Cybern 20(), 1975

G, 1983

M, 1984

M, J Comp Physiol A 163(), 1988

C, 1981

MF, J Comp Physiol 89(), 1974

AUTHOR UNKNOWN, 1983

W, J Comp Physiol A 161(), 1987
Visual control of orientation behaviour in the fly. Part I. A quantitative analysis.
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441

W, Biol Cybern 46(Suppl), 1983

M, 1980

M, Z Naturforsch 33c(), 1978

H, Phil Trans R Soc Lond B 312(), 1986

H, Phil Trans R Soc Lond B 312(), 1986

C, 1985

C, Biol Cybern 45(), 1982

JM, 1987
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 2810146
PubMed | Europe PMC

Suchen in

Google Scholar