Principles of visual motion detection
Borst A, Egelhaaf M (1989)
Trends in Neurosciences 12(8): 297-306.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Borst, Alexander;
Egelhaaf, MartinUniBi
Einrichtung
Abstract / Bemerkung
Motion information is required for the solution of many complex tasks of the visual system such as depth perception by motion parallax and figure/ground discrimination by relative motion. However, motion information is not explicitly encoded at the level of the retinal input. Instead, it has to be computed from the time-dependent brightness patterns of the retinal image as sensed by the two-dimensional array of photoreceptors. Different models have been proposed which describe the neural computations underlying motion detection in various ways. To what extent do biological motion detectors approximate any of these models? As will be argued here, there is increasing evidence from the different disciplines studying biological motion vision, that, throughout the animal kingdom ranging from invertebrates to vertebrates including man, the mechanisms underlying motion detection can be attributed to only a few, essentially equivalent computational principles. Motion detection may, therefore, be one of the first examples in computational neurosciences where common principles can be found not only at the cellular level (e.g. dendritic integration, spike propagation, synaptic transmission) but also at the level of computations performed by small neural networks.
Stichworte
Neural coordination;
Sensory reception;
Behavior
Erscheinungsjahr
1989
Zeitschriftentitel
Trends in Neurosciences
Band
12
Ausgabe
8
Seite(n)
297-306
ISSN
0166-2236
Page URI
https://pub.uni-bielefeld.de/record/1774131
Zitieren
Borst A, Egelhaaf M. Principles of visual motion detection. Trends in Neurosciences. 1989;12(8):297-306.
Borst, A., & Egelhaaf, M. (1989). Principles of visual motion detection. Trends in Neurosciences, 12(8), 297-306. https://doi.org/10.1016/0166-2236(89)90010-6
Borst, Alexander, and Egelhaaf, Martin. 1989. “Principles of visual motion detection”. Trends in Neurosciences 12 (8): 297-306.
Borst, A., and Egelhaaf, M. (1989). Principles of visual motion detection. Trends in Neurosciences 12, 297-306.
Borst, A., & Egelhaaf, M., 1989. Principles of visual motion detection. Trends in Neurosciences, 12(8), p 297-306.
A. Borst and M. Egelhaaf, “Principles of visual motion detection”, Trends in Neurosciences, vol. 12, 1989, pp. 297-306.
Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences. 12, 297-306 (1989).
Borst, Alexander, and Egelhaaf, Martin. “Principles of visual motion detection”. Trends in Neurosciences 12.8 (1989): 297-306.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:10Z
MD5 Prüfsumme
d6ae18ee47ab9f1deeac004dab670ed9
Daten bereitgestellt von European Bioinformatics Institute (EBI)
123 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Proprioceptive feedback determines visuomotor gain in Drosophila.
Bartussek J, Lehmann FO., R Soc Open Sci 3(1), 2016
PMID: 26909184
Bartussek J, Lehmann FO., R Soc Open Sci 3(1), 2016
PMID: 26909184
Dscam2 affects visual perception in Drosophila melanogaster.
Bosch DS, van Swinderen B, Millard SS., Front Behav Neurosci 9(), 2015
PMID: 26106310
Bosch DS, van Swinderen B, Millard SS., Front Behav Neurosci 9(), 2015
PMID: 26106310
The contrast sensitivity function of the praying mantis Sphodromantis lineola.
Nityananda V, Tarawneh G, Jones L, Busby N, Herbert W, Davies R, Read JC., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201(8), 2015
PMID: 25894490
Nityananda V, Tarawneh G, Jones L, Busby N, Herbert W, Davies R, Read JC., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 201(8), 2015
PMID: 25894490
Temporal statistics of natural image sequences generated by movements with insect flight characteristics.
Schwegmann A, Lindemann JP, Egelhaaf M., PLoS ONE 9(10), 2014
PMID: 25340761
Schwegmann A, Lindemann JP, Egelhaaf M., PLoS ONE 9(10), 2014
PMID: 25340761
Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets.
Kress D, Egelhaaf M., Front Behav Neurosci 8(), 2014
PMID: 25309362
Kress D, Egelhaaf M., Front Behav Neurosci 8(), 2014
PMID: 25309362
Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions.
Ullrich TW, Kern R, Egelhaaf M., Front Integr Neurosci 8(), 2014
PMID: 24808836
Ullrich TW, Kern R, Egelhaaf M., Front Integr Neurosci 8(), 2014
PMID: 24808836
Equilibrating errors: reliable estimation of information transmission rates in biological systems with spectral analysis-based methods.
Ignatova I, French AS, Immonen EV, Frolov R, Weckstrom M., Biol Cybern 108(3), 2014
PMID: 24692025
Ignatova I, French AS, Immonen EV, Frolov R, Weckstrom M., Biol Cybern 108(3), 2014
PMID: 24692025
Neural circuits for elementary motion detection.
Borst A., J. Neurogenet. 28(3-4), 2014
PMID: 24605814
Borst A., J. Neurogenet. 28(3-4), 2014
PMID: 24605814
Mathematical analysis and modeling of motion direction selectivity in the retina.
Escobar MJ, Pezo D, Orio P., J. Physiol. Paris 107(5), 2013
PMID: 24008129
Escobar MJ, Pezo D, Orio P., J. Physiol. Paris 107(5), 2013
PMID: 24008129
Direction-specific adaptation of motion-onset auditory evoked potentials.
Grzeschik R, Bockmann-Barthel M, Muhler R, Verhey JL, Hoffmann MB., Eur. J. Neurosci. 38(4), 2013
PMID: 23725339
Grzeschik R, Bockmann-Barthel M, Muhler R, Verhey JL, Hoffmann MB., Eur. J. Neurosci. 38(4), 2013
PMID: 23725339
Insect-inspired high-speed motion vision system for robot control.
Wu H, Zou K, Zhang T, Borst A, Kuhnlenz K., Biol Cybern 106(8-9), 2012
PMID: 22864467
Wu H, Zou K, Zhang T, Borst A, Kuhnlenz K., Biol Cybern 106(8-9), 2012
PMID: 22864467
Neural computation via neural geometry: a place code for inter-whisker timing in the barrel cortex?
Wilson SP, Bednar JA, Prescott TJ, Mitchinson B., PLoS Comput. Biol. 7(10), 2011
PMID: 22022245
Wilson SP, Bednar JA, Prescott TJ, Mitchinson B., PLoS Comput. Biol. 7(10), 2011
PMID: 22022245
Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons.
Rien D, Kern R, Kurtz R., Eur. J. Neurosci. 34(5), 2011
PMID: 21819463
Rien D, Kern R, Kurtz R., Eur. J. Neurosci. 34(5), 2011
PMID: 21819463
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdorfer B, Egelhaaf M., Eur. J. Neurosci. 30(4), 2009
PMID: 19674090
Kurtz R, Beckers U, Hundsdorfer B, Egelhaaf M., Eur. J. Neurosci. 30(4), 2009
PMID: 19674090
Divergence of visual motion detection in diurnal geckos that inhabit bright and dark habitats
Nava SS, Conway MA, Martins EP., 2009
PMID: IND44226542
Nava SS, Conway MA, Martins EP., 2009
PMID: IND44226542
The first steps in Drosophila motion detection.
Vogt N, Desplan C., Neuron 56(1), 2007
PMID: 17920008
Vogt N, Desplan C., Neuron 56(1), 2007
PMID: 17920008
Salamander locomotion-induced head movement and retinal motion sensitivity in a correlation-based motion detector model.
Begley JR, Arbib MA., Network 18(2), 2007
PMID: 17852753
Begley JR, Arbib MA., Network 18(2), 2007
PMID: 17852753
Life-threatening hemorrhage of an unanticipated superficial circumflex iliac artery origin imaged with Tc-99m-labeled erythrocytes.
Passarell S, Holder LE, Hastings G., Clin Nucl Med 25(6), 2000
PMID: 10836689
Passarell S, Holder LE, Hastings G., Clin Nucl Med 25(6), 2000
PMID: 10836689
Complex motion stimuli localize higher-order visual processing in normal observers and in patients with parietal lesions.
Zanker JM, Patzwahl DP, Braun D, Fahle M., Aust N Z J Ophthalmol 26(2), 1998
PMID: 9630296
Zanker JM, Patzwahl DP, Braun D, Fahle M., Aust N Z J Ophthalmol 26(2), 1998
PMID: 9630296
Dual Population Coding in the Neocortex: A Model of Interaction between Representation and Attention in the Visual Cortex.
Koechlin E, Burnod Y., J Cogn Neurosci 8(4), 1996
PMID: 23971506
Koechlin E, Burnod Y., J Cogn Neurosci 8(4), 1996
PMID: 23971506
69 References
Daten bereitgestellt von Europe PubMed Central.
Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly
Egelhaaf, Biological Cybernetics 56(2-3), 1987
Egelhaaf, Biological Cybernetics 56(2-3), 1987
Motion sensitive interneurons in the optomotor system of the fly
Hausen, Biological Cybernetics 45(2), 1982
Hausen, Biological Cybernetics 45(2), 1982
A model for direction selectivity in threshold motion perception.
Wilson HR., Biol Cybern 51(4), 1985
PMID: 3970982
Wilson HR., Biol Cybern 51(4), 1985
PMID: 3970982
A proposed mechanism for multiplication of neural signals.
Srinivasan MV, Bernard GD., Biol Cybern 21(4), 1976
PMID: 174752
Srinivasan MV, Bernard GD., Biol Cybern 21(4), 1976
PMID: 174752
Considerations on models of movement detection.
Poggio T, Reichardt W., Kybernetik 13(4), 1973
PMID: 4359479
Poggio T, Reichardt W., Kybernetik 13(4), 1973
PMID: 4359479
Evaluation of optical motion information by movement detectors.
Reichardt W., J. Comp. Physiol. A 161(4), 1987
PMID: 3681769
Reichardt W., J. Comp. Physiol. A 161(4), 1987
PMID: 3681769
The contrast frequency-dependence: A criterion for judging the non-participation of neurones in the control of behavioural responses
Eckert, Journal of Comparative Physiology □ A 145(2), 1981
Eckert, Journal of Comparative Physiology □ A 145(2), 1981
What kind of movement detector is triggering the landing response of the housefly?
Borst, Biological Cybernetics 55(1), 1986
Borst, Biological Cybernetics 55(1), 1986
Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly
Reichardt, Biological Cybernetics 58(5), 1988
Reichardt, Biological Cybernetics 58(5), 1988
Functional properties of models for direction selectivity in the retina.
Grzywacz NM, Koch C., Synapse 1(5), 1987
PMID: 3505372
Grzywacz NM, Koch C., Synapse 1(5), 1987
PMID: 3505372
Visual spatial summation in two classes of geniculate cells.
Shapley R, Hochstein S., Nature 256(5516), 1975
PMID: 1143345
Shapley R, Hochstein S., Nature 256(5516), 1975
PMID: 1143345
Low-Level and High-Level Processes in Apparent Motion [and Discussion]
Braddick, Philosophical Transactions of The Royal Society B Biological Sciences 290(1038), 1980
Braddick, Philosophical Transactions of The Royal Society B Biological Sciences 290(1038), 1980
On the capacity of directionally selective mechanisms to encode different dimensions of moving stimuli.
Pantle A, Lehmkuhle S, Caudill M., Perception 7(3), 1978
PMID: 693226
Pantle A, Lehmkuhle S, Caudill M., Perception 7(3), 1978
PMID: 693226
Temporal properties of the short-range process in apparent motion.
Baker CL Jr, Braddick OJ., Perception 14(2), 1985
PMID: 4069948
Baker CL Jr, Braddick OJ., Perception 14(2), 1985
PMID: 4069948
Some tests of the Marr-Ullman model of movement detection.
Moulden B, Begg H., Perception 15(2), 1986
PMID: 3774485
Moulden B, Begg H., Perception 15(2), 1986
PMID: 3774485
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Detection and discrimination of sinusoidal grating displacements.
Nakayama K, Silverman GH., J Opt Soc Am A 2(2), 1985
PMID: 3973759
Nakayama K, Silverman GH., J Opt Soc Am A 2(2), 1985
PMID: 3973759
Spatiotemporal energy models for the perception of motion.
Adelson EH, Bergen JR., J Opt Soc Am A 2(2), 1985
PMID: 3973762
Adelson EH, Bergen JR., J Opt Soc Am A 2(2), 1985
PMID: 3973762
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 2475948
PubMed | Europe PMC
Suchen in