Visual course control in flies relies on neuronal computation of object and background motion

Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988)
Trends in Neurosciences 11(8): 351-358.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Egelhaaf, MartinUniBi ; Hausen, Klaus; Reichardt, Werner; Wehrhahn, Christian
Abstract / Bemerkung
The spatial distribution of light intensity received by the eyes changes continually when an animal moves around in its environment. These retinal activity patterns contain a wealth of information on the structure of the environment, the direction and speed of self-motion, and on the independent motion of objects1,2. If evaluated properly by the nervous system this information can be used in visual orientation. In a combination of both behavioural and electrophysiological analysis and modelling, this article establishes the neural mechanisms by which the visual system of the fly evaluates two types of basic retinal motion patterns: coherent retinal large-field motion as induced by self-motion of the animal, and relative motion between objects and their background. Separate neuronal networks are specifically tuned to each of these motion patterns and make use of them in two different visual orientation tasks.
Stichworte
Physiology; Sensory reception; Neural coordination
Erscheinungsjahr
1988
Zeitschriftentitel
Trends in Neurosciences
Band
11
Ausgabe
8
Seite(n)
351-358
ISSN
0166-2236
Page URI
https://pub.uni-bielefeld.de/record/1774114

Zitieren

Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C. Visual course control in flies relies on neuronal computation of object and background motion. Trends in Neurosciences. 1988;11(8):351-358.
Egelhaaf, M., Hausen, K., Reichardt, W., & Wehrhahn, C. (1988). Visual course control in flies relies on neuronal computation of object and background motion. Trends in Neurosciences, 11(8), 351-358. https://doi.org/10.1016/0166-2236(88)90057-4
Egelhaaf, Martin, Hausen, Klaus, Reichardt, Werner, and Wehrhahn, Christian. 1988. “Visual course control in flies relies on neuronal computation of object and background motion”. Trends in Neurosciences 11 (8): 351-358.
Egelhaaf, M., Hausen, K., Reichardt, W., and Wehrhahn, C. (1988). Visual course control in flies relies on neuronal computation of object and background motion. Trends in Neurosciences 11, 351-358.
Egelhaaf, M., et al., 1988. Visual course control in flies relies on neuronal computation of object and background motion. Trends in Neurosciences, 11(8), p 351-358.
M. Egelhaaf, et al., “Visual course control in flies relies on neuronal computation of object and background motion”, Trends in Neurosciences, vol. 11, 1988, pp. 351-358.
Egelhaaf, M., Hausen, K., Reichardt, W., Wehrhahn, C.: Visual course control in flies relies on neuronal computation of object and background motion. Trends in Neurosciences. 11, 351-358 (1988).
Egelhaaf, Martin, Hausen, Klaus, Reichardt, Werner, and Wehrhahn, Christian. “Visual course control in flies relies on neuronal computation of object and background motion”. Trends in Neurosciences 11.8 (1988): 351-358.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:10Z
MD5 Prüfsumme
6987abaebe60fac5ee1bddece441a557


40 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Optic flow stabilizes flight in ruby-throated hummingbirds.
Ros IG, Biewener AA., J Exp Biol 219(pt 16), 2016
PMID: 27284072
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA., J Exp Biol 217(pt 4), 2014
PMID: 24198267
To keep on track during flight, fruitflies discount the skyward view.
Mazo C, Theobald JC., Biol Lett 10(2), 2014
PMID: 24554476
Toward a science of computational ethology.
Anderson DJ, Perona P., Neuron 84(1), 2014
PMID: 25277452
Asymmetric processing of visual motion for simultaneous object and background responses.
Fenk LM, Poehlmann A, Straw AD., Curr Biol 24(24), 2014
PMID: 25454785
Motion parallax processing in pigeon (Columba livia) pretectal neurons.
Xiao Q, Frost BJ., Eur J Neurosci 37(7), 2013
PMID: 23294181
Invertebrate vision: peripheral adaptation to repeated object motion.
Nordström K, Gonzalez-Bellido PT., Curr Biol 23(15), 2013
PMID: 23928083
Motion psychophysics: 1985-2010.
Burr D, Thompson P., Vision Res 51(13), 2011
PMID: 21324335
Drosophila fly straight by fixating objects in the face of expanding optic flow.
Reiser MB, Dickinson MH., J Exp Biol 213(pt 10), 2010
PMID: 20435828
Theta motion processing in fruit flies.
Theobald JC, Shoemaker PA, Ringach DL, Frye MA., Front Behav Neurosci 4(), 2010
PMID: 20700393
Feature detection and the hypercomplex property in insects.
Nordström K, O'Carroll DC., Trends Neurosci 32(7), 2009
PMID: 19541374
Exploratory behaviour in NO-dependent cyclase mutants of Drosophila shows defects in coincident neuronal signalling.
Tinette S, Zhang L, Garnier A, Engler G, Tares S, Robichon A., BMC Neurosci 8(), 2007
PMID: 17683617
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
Insect detection of small targets moving in visual clutter.
Nordström K, Barnett PD, O'Carroll DC., PLoS Biol 4(3), 2006
PMID: 16448249
Wavelength dependence of the optomotor response in zebrafish (Danio rerio).
Krauss A, Neumeyer C., Vision Res 43(11), 2003
PMID: 12726833
A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances.
Hrncir M, Jarau S, Zucchi R, Barth FG., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(10), 2003
PMID: 12928953
Motion detection in insect orientation and navigation.
Srinivasan MV, Poteser M, Kral K., Vision Res 39(16), 1999
PMID: 10492835
Modeling human motion perception. I. Classical stimuli.
Zanker J., Naturwissenschaften 81(4), 1994
PMID: 8202164
Why physicists like models and why biologists should.
Hillis WD., Curr Biol 3(2), 1993
PMID: 15335798
The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla.
Bausenwein B, Dittrich AP, Fischbach KF., Cell Tissue Res 267(1), 1992
PMID: 1735111
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci Lett 140(2), 1992
PMID: 1501773
Neuronal basis for parallel visual processing in the fly.
Strausfeld NJ, Lee JK., Vis Neurosci 7(1-2), 1991
PMID: 1931797
The role of GABA in detecting visual motion.
Egelhaaf M, Borst A, Pilz B., Brain Res 509(1), 1990
PMID: 2306632
Direction selectivity of blowfly motion-sensitive neurons is computed in a two-stage process.
Borst A, Egelhaaf M., Proc Natl Acad Sci U S A 87(23), 1990
PMID: 2251278

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 2469195
PubMed | Europe PMC

Suchen in

Google Scholar