Dendritic processing of synaptic information by sensory interneurons

Borst A, Egelhaaf M (1994)
Trends in Neurosciences 17(6): 257-263.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Borst, Alexander; Egelhaaf, MartinUniBi
Abstract / Bemerkung
One of the most distinguishing features of nerve cells is the vast morphological diversity of their input regions, that is, their dendrites. These range from bulbous structures, with only small protrusions, to large tree-like arborizations. The diversity of nerve cells is further augmented by a continuously increasing number of types of voltage-dependent conductances in dendrites that might alter the postsynaptic signals in a pronounced way. Moreover, intracellular factors such as Ca2+ link electrical activity with biochemical processes, and can induce short and long-term changes in responsiveness. This complexity of neurons in general, and the uniqueness of each cell type, sharply contrasts with the comparatively simple and uniform design principle of the integrate-and-fire units of so-called neuronal net models. This raises the question of which particular structural and physiological details of nerve cells really matter for the performance of neuronal circuits. An answer to this basic problem of computational neurobiology might be given only if the task of the neurons and circuits is known. This review illustrates how the problem can be approached particularly well in sensory interneurons. The functional significance of sensory interneurons can often be assessed more easily than that of central nerve cells because of their vicinity to the sensory surface.
Stichworte
Cell biology; Biochemistry; Neural coordination; Membranes; Molecular biophysics
Erscheinungsjahr
1994
Zeitschriftentitel
Trends in Neurosciences
Band
17
Ausgabe
6
Seite(n)
257-263
ISSN
0166-2236
Page URI
https://pub.uni-bielefeld.de/record/1774093

Zitieren

Borst A, Egelhaaf M. Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences. 1994;17(6):257-263.
Borst, A., & Egelhaaf, M. (1994). Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences, 17(6), 257-263. https://doi.org/10.1016/0166-2236(94)90009-4
Borst, Alexander, and Egelhaaf, Martin. 1994. “Dendritic processing of synaptic information by sensory interneurons”. Trends in Neurosciences 17 (6): 257-263.
Borst, A., and Egelhaaf, M. (1994). Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences 17, 257-263.
Borst, A., & Egelhaaf, M., 1994. Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences, 17(6), p 257-263.
A. Borst and M. Egelhaaf, “Dendritic processing of synaptic information by sensory interneurons”, Trends in Neurosciences, vol. 17, 1994, pp. 257-263.
Borst, A., Egelhaaf, M.: Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences. 17, 257-263 (1994).
Borst, Alexander, and Egelhaaf, Martin. “Dendritic processing of synaptic information by sensory interneurons”. Trends in Neurosciences 17.6 (1994): 257-263.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:09Z
MD5 Prüfsumme
8e80ed642b98e0adbebdeb1efe55a7cd


22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

How Dendrites Affect Online Recognition Memory.
Wu X, Mel GC, Strouse DJ, Mel BW., PLoS Comput Biol 15(5), 2019
PMID: 31050662
Type 2 wide-field amacrine cells in TH::GFP mice show a homogenous synapse distribution and contact small ganglion cells.
Brüggen B, Meyer A, Boven F, Weiler R, Dedek K., Eur J Neurosci 41(6), 2015
PMID: 25546402
A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons.
Staudacher EM, Huetteroth W, Schachtner J, Daly KC., J Neurosci Methods 180(2), 2009
PMID: 19464513
Ca2+ imaging in the mammalian brain in vivo.
Helmchen F, Waters J., Eur J Pharmacol 447(2-3), 2002
PMID: 12151004
A pulsed neural network model of bursting in the basal ganglia.
Humphries MD, Gurney KN., Neural Netw 14(6-7), 2001
PMID: 11665776
The role of dendrites in auditory coincidence detection.
Agmon-Snir H, Carr CE, Rinzel J., Nature 393(6682), 1998
PMID: 9607764
A semi-in-vivo preparation for optical recording of the insect brain.
Galizia CG, Joerges J, Küttner A, Faber T, Menzel R., J Neurosci Methods 76(1), 1997
PMID: 9334940
Spatial synaptic integration in Purkinje cell dendrites.
Midtgaard J., J Physiol Paris 89(1), 1995
PMID: 7581295
The behaving brain of a fly.
Ferrús A, Canal I., Trends Neurosci 17(11), 1994
PMID: 7531890

35 References

Daten bereitgestellt von Europe PubMed Central.

Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation.
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1432076
Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1359027
Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels.
Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D., Neuron 9(6), 1992
PMID: 1361128

Rall, 1989

Segev, 1989
Single neurone models: oversimple, complex and reduced.
Segev I., Trends Neurosci. 15(11), 1992
PMID: 1281347
Membrane time constant of motoneurons.
RALL W., Science 126(3271), 1957
PMID: 13467230
Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons.
Rall W, Burke RE, Smith TG, Nelson PG, Frank K., J. Neurophysiol. 30(5), 1967
PMID: 4293410
Retinal ganglion cells: a functional interpretation of dendritic morphology.
Koch C, Poggio T, Torre V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 298(1090), 1982
PMID: 6127730

Koch, 1983

Borst, 1992

Hausen, 1989

Laughlin, 1981
Early visual processing in insects.
Shaw SR., J. Exp. Biol. 112(), 1984
PMID: 6392468
Direct connections between the R7/8 and R1-6 photoreceptor subsystems in the dipteran visual system.
Shaw SR, Frohlich A, Meinertzhagen IA., Cell Tissue Res. 257(2), 1989
PMID: 2776184

Laughlin, 1987

Freed, 1992
The ON-alpha ganglion cell of the cat retina and its presynaptic cell types.
Freed MA, Sterling P., J. Neurosci. 8(7), 1988
PMID: 3249227

Tsukamoto, 1990

van, J. Comp. Physiol. 171(), 1992
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948

Borst, 1990
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 7521087
PubMed | Europe PMC

Suchen in

Google Scholar