Dendritic processing of synaptic information by sensory interneurons
Borst A, Egelhaaf M (1994)
Trends in Neurosciences 17(6): 257-263.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Borst, Alexander;
Egelhaaf, MartinUniBi
Einrichtung
Abstract / Bemerkung
One of the most distinguishing features of nerve cells is the vast morphological diversity of their input regions, that is, their dendrites. These range from bulbous structures, with only small protrusions, to large tree-like arborizations. The diversity of nerve cells is further augmented by a continuously increasing number of types of voltage-dependent conductances in dendrites that might alter the postsynaptic signals in a pronounced way. Moreover, intracellular factors such as Ca2+ link electrical activity with biochemical processes, and can induce short and long-term changes in responsiveness. This complexity of neurons in general, and the uniqueness of each cell type, sharply contrasts with the comparatively simple and uniform design principle of the integrate-and-fire units of so-called neuronal net models. This raises the question of which particular structural and physiological details of nerve cells really matter for the performance of neuronal circuits. An answer to this basic problem of computational neurobiology might be given only if the task of the neurons and circuits is known. This review illustrates how the problem can be approached particularly well in sensory interneurons. The functional significance of sensory interneurons can often be assessed more easily than that of central nerve cells because of their vicinity to the sensory surface.
Stichworte
Cell biology;
Biochemistry;
Neural coordination;
Membranes;
Molecular biophysics
Erscheinungsjahr
1994
Zeitschriftentitel
Trends in Neurosciences
Band
17
Ausgabe
6
Seite(n)
257-263
ISSN
0166-2236
Page URI
https://pub.uni-bielefeld.de/record/1774093
Zitieren
Borst A, Egelhaaf M. Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences. 1994;17(6):257-263.
Borst, A., & Egelhaaf, M. (1994). Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences, 17(6), 257-263. https://doi.org/10.1016/0166-2236(94)90009-4
Borst, Alexander, and Egelhaaf, Martin. 1994. “Dendritic processing of synaptic information by sensory interneurons”. Trends in Neurosciences 17 (6): 257-263.
Borst, A., and Egelhaaf, M. (1994). Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences 17, 257-263.
Borst, A., & Egelhaaf, M., 1994. Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences, 17(6), p 257-263.
A. Borst and M. Egelhaaf, “Dendritic processing of synaptic information by sensory interneurons”, Trends in Neurosciences, vol. 17, 1994, pp. 257-263.
Borst, A., Egelhaaf, M.: Dendritic processing of synaptic information by sensory interneurons. Trends in Neurosciences. 17, 257-263 (1994).
Borst, Alexander, and Egelhaaf, Martin. “Dendritic processing of synaptic information by sensory interneurons”. Trends in Neurosciences 17.6 (1994): 257-263.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:09Z
MD5 Prüfsumme
8e80ed642b98e0adbebdeb1efe55a7cd
Daten bereitgestellt von European Bioinformatics Institute (EBI)
22 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
How Dendrites Affect Online Recognition Memory.
Wu X, Mel GC, Strouse DJ, Mel BW., PLoS Comput Biol 15(5), 2019
PMID: 31050662
Wu X, Mel GC, Strouse DJ, Mel BW., PLoS Comput Biol 15(5), 2019
PMID: 31050662
Type 2 wide-field amacrine cells in TH::GFP mice show a homogenous synapse distribution and contact small ganglion cells.
Brüggen B, Meyer A, Boven F, Weiler R, Dedek K., Eur J Neurosci 41(6), 2015
PMID: 25546402
Brüggen B, Meyer A, Boven F, Weiler R, Dedek K., Eur J Neurosci 41(6), 2015
PMID: 25546402
A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons.
Staudacher EM, Huetteroth W, Schachtner J, Daly KC., J Neurosci Methods 180(2), 2009
PMID: 19464513
Staudacher EM, Huetteroth W, Schachtner J, Daly KC., J Neurosci Methods 180(2), 2009
PMID: 19464513
Spatial integration of optic flow signals in fly motion-sensitive neurons.
Neri P., J Neurophysiol 95(3), 2006
PMID: 16338996
Neri P., J Neurophysiol 95(3), 2006
PMID: 16338996
Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron.
Ogawa H, Baba Y, Oka K., Neurosci Lett 358(3), 2004
PMID: 15039112
Ogawa H, Baba Y, Oka K., Neurosci Lett 358(3), 2004
PMID: 15039112
Dendritic initiation and propagation of spikes and spike bursts in a multimodal sensory interneuron: the crustacean parasol cell.
Mellon D., J Neurophysiol 90(4), 2003
PMID: 12789014
Mellon D., J Neurophysiol 90(4), 2003
PMID: 12789014
Ca2+ imaging in the mammalian brain in vivo.
Helmchen F, Waters J., Eur J Pharmacol 447(2-3), 2002
PMID: 12151004
Helmchen F, Waters J., Eur J Pharmacol 447(2-3), 2002
PMID: 12151004
A pulsed neural network model of bursting in the basal ganglia.
Humphries MD, Gurney KN., Neural Netw 14(6-7), 2001
PMID: 11665776
Humphries MD, Gurney KN., Neural Netw 14(6-7), 2001
PMID: 11665776
Information processing in dendrites I. Input pattern generalisation.
Gurney KN., Neural Netw 14(8), 2001
PMID: 11681759
Gurney KN., Neural Netw 14(8), 2001
PMID: 11681759
Electrophysiological and theoretical analysis of depolarization-dependent outward currents in the dendritic membrane of an identified nonspiking interneuron in crayfish.
Takashima A, Takahata M., J Comput Neurosci 9(2), 2000
PMID: 11030521
Takashima A, Takahata M., J Comput Neurosci 9(2), 2000
PMID: 11030521
Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron.
Ogawa H, Baba Y, Oka K., Neurosci Lett 275(1), 1999
PMID: 10554985
Ogawa H, Baba Y, Oka K., Neurosci Lett 275(1), 1999
PMID: 10554985
In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons.
Dürr V, Egelhaaf M., J Neurophysiol 82(6), 1999
PMID: 10601464
Dürr V, Egelhaaf M., J Neurophysiol 82(6), 1999
PMID: 10601464
Quantitative analyses of anatomical and electrotonic structures of crayfish nonspiking interneurons by three-dimensional morphometry.
Hikosaka R, Takahata M., J Comp Neurol 392(3), 1998
PMID: 9511924
Hikosaka R, Takahata M., J Comp Neurol 392(3), 1998
PMID: 9511924
The role of dendrites in auditory coincidence detection.
Agmon-Snir H, Carr CE, Rinzel J., Nature 393(6682), 1998
PMID: 9607764
Agmon-Snir H, Carr CE, Rinzel J., Nature 393(6682), 1998
PMID: 9607764
Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations.
Segev I, Rall W., Trends Neurosci 21(11), 1998
PMID: 9829684
Segev I, Rall W., Trends Neurosci 21(11), 1998
PMID: 9829684
A semi-in-vivo preparation for optical recording of the insect brain.
Galizia CG, Joerges J, Küttner A, Faber T, Menzel R., J Neurosci Methods 76(1), 1997
PMID: 9334940
Galizia CG, Joerges J, Küttner A, Faber T, Menzel R., J Neurosci Methods 76(1), 1997
PMID: 9334940
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties.
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Dendritic integration in mammalian neurons, a century after Cajal.
Yuste R, Tank DW., Neuron 16(4), 1996
PMID: 8607989
Yuste R, Tank DW., Neuron 16(4), 1996
PMID: 8607989
Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus.
Ogawa H, Baba Y, Oka K., Neurosci Lett 219(1), 1996
PMID: 8961294
Ogawa H, Baba Y, Oka K., Neurosci Lett 219(1), 1996
PMID: 8961294
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties.
Borst A, Haag J., J Comput Neurosci 3(4), 1996
PMID: 9001975
Borst A, Haag J., J Comput Neurosci 3(4), 1996
PMID: 9001975
Spatial synaptic integration in Purkinje cell dendrites.
Midtgaard J., J Physiol Paris 89(1), 1995
PMID: 7581295
Midtgaard J., J Physiol Paris 89(1), 1995
PMID: 7581295
35 References
Daten bereitgestellt von Europe PubMed Central.
Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices.
Llinas R, Sugimori M., J. Physiol. (Lond.) 305(), 1980
PMID: 7441552
Llinas R, Sugimori M., J. Physiol. (Lond.) 305(), 1980
PMID: 7441552
Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation.
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1432076
Lev-Ram V, Miyakawa H, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1432076
Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1359027
Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN., J. Neurophysiol. 68(4), 1992
PMID: 1359027
Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells.
Regehr WG, Tank DW., J. Neurosci. 12(11), 1992
PMID: 1359030
Regehr WG, Tank DW., J. Neurosci. 12(11), 1992
PMID: 1359030
Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels.
Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D., Neuron 9(6), 1992
PMID: 1361128
Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D., Neuron 9(6), 1992
PMID: 1361128
Rall, 1989
Segev, 1989
Single neurone models: oversimple, complex and reduced.
Segev I., Trends Neurosci. 15(11), 1992
PMID: 1281347
Segev I., Trends Neurosci. 15(11), 1992
PMID: 1281347
Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons.
Rall W, Burke RE, Smith TG, Nelson PG, Frank K., J. Neurophysiol. 30(5), 1967
PMID: 4293410
Rall W, Burke RE, Smith TG, Nelson PG, Frank K., J. Neurophysiol. 30(5), 1967
PMID: 4293410
Retinal ganglion cells: a functional interpretation of dendritic morphology.
Koch C, Poggio T, Torre V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 298(1090), 1982
PMID: 6127730
Koch C, Poggio T, Torre V., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 298(1090), 1982
PMID: 6127730
Koch, 1983
Borst, 1992
Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Hausen, 1989
Direct visualization of the dendritic and receptive fields of directionally selective retinal ganglion cells.
Yang G, Masland RH., Science 258(5090), 1992
PMID: 1470920
Yang G, Masland RH., Science 258(5090), 1992
PMID: 1470920
[The projection of the optical environment on the screen of the rhabdomere in the compound eye of the Musca].
Kirschfeld K., Exp Brain Res 3(3), 1967
PMID: 6067693
Kirschfeld K., Exp Brain Res 3(3), 1967
PMID: 6067693
Laughlin, 1981
Direct connections between the R7/8 and R1-6 photoreceptor subsystems in the dipteran visual system.
Shaw SR, Frohlich A, Meinertzhagen IA., Cell Tissue Res. 257(2), 1989
PMID: 2776184
Shaw SR, Frohlich A, Meinertzhagen IA., Cell Tissue Res. 257(2), 1989
PMID: 2776184
An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly.
Nicol D, Meinertzhagen IA., J. Comp. Neurol. 207(1), 1982
PMID: 7096637
Nicol D, Meinertzhagen IA., J. Comp. Neurol. 207(1), 1982
PMID: 7096637
Laughlin, 1987
Freed, 1992
The ON-alpha ganglion cell of the cat retina and its presynaptic cell types.
Freed MA, Sterling P., J. Neurosci. 8(7), 1988
PMID: 3249227
Freed MA, Sterling P., J. Neurosci. 8(7), 1988
PMID: 3249227
Tsukamoto, 1990
van, J. Comp. Physiol. 171(), 1992
Functional properties of individual neuronal branches isolated in situ by laser photoinactivation.
Jacobs GA, Miller JP., Science 228(4697), 1985
PMID: 3983633
Jacobs GA, Miller JP., Science 228(4697), 1985
PMID: 3983633
Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron.
Jacobs GA, Miller JP, Murphey RK., J. Neurosci. 6(8), 1986
PMID: 3746411
Jacobs GA, Miller JP, Murphey RK., J. Neurosci. 6(8), 1986
PMID: 3746411
Temporal filtering properties of midbrain neurons in an electric fish: implications for the function of dendritic spines.
Rose GJ, Call SJ., J. Neurosci. 13(3), 1993
PMID: 8441006
Rose GJ, Call SJ., J. Neurosci. 13(3), 1993
PMID: 8441006
Dendritic integration of motion information in visual interneurons of the blowfly.
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773
Haag J, Egelhaaf M, Borst A., Neurosci. Lett. 140(2), 1992
PMID: 1501773
Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948
Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system.
Egelhaaf M, Borst A, Reichardt W., J Opt Soc Am A 6(7), 1989
PMID: 2760723
Egelhaaf M, Borst A, Reichardt W., J Opt Soc Am A 6(7), 1989
PMID: 2760723
Borst, 1990
Evidence for a computational distinction between proximal and distal neuronal inhibition.
Vu ET, Krasne FB., Science 255(5052), 1992
PMID: 1553559
Vu ET, Krasne FB., Science 255(5052), 1992
PMID: 1553559
The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function.
Llinas RR., Science 242(4886), 1988
PMID: 3059497
Llinas RR., Science 242(4886), 1988
PMID: 3059497
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 7521087
PubMed | Europe PMC
Suchen in