Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains

Giuntini E, Mengoni A, De Filippo C, Cavalieri D, Aubin-Horth N, Landry CR, Becker A, Bazzicalupo M (2005)
BMC Genomics 6(1): 158.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Giuntini, Elisa; Mengoni, Alessio; De Filippo, Carlotta; Cavalieri, Duccio; Aubin-Horth, Nadia; Landry, Christian R.; Becker, Anke; Bazzicalupo, Marco
Abstract / Bemerkung
Background: Sinorhizobium meliloti is a soil bacterium that forms nitrogen-fixing nodules on the roots of leguminous plants such as alfalfa ( Medicago sativa). This species occupies different ecological niches, being present as a free-living soil bacterium and as a symbiont of plant root nodules. The genome of the type strain Rm 1021 contains one chromosome and two megaplasmids for a total genome size of 6 Mb. We applied comparative genomic hybridisation (CGH) on an oligonucleotide microarrays to estimate genetic variation at the genomic level in four natural strains, two isolated from Italian agricultural soil and two from desert soil in the Aral Sea region. Results: From 4.6 to 5.7 percent of the genes showed a pattern of hybridisation concordant with deletion, nucleotide divergence or ORF duplication when compared to the type strain Rm 1021. A large number of these polymorphisms were confirmed by sequencing and Southern blot. A statistically significant fraction of these variable genes was found on the pSymA megaplasmid and grouped in clusters. These variable genes were found to be mainly transposases or genes with unknown function. Conclusion: The obtained results allow to conclude that the symbiosis-required megaplasmid pSymA can be considered the major hot-spot for intra-specific differentiation in S. meliloti.
Erscheinungsjahr
2005
Zeitschriftentitel
BMC Genomics
Band
6
Ausgabe
1
Art.-Nr.
158
ISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/1773618

Zitieren

Giuntini E, Mengoni A, De Filippo C, et al. Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics. 2005;6(1): 158.
Giuntini, E., Mengoni, A., De Filippo, C., Cavalieri, D., Aubin-Horth, N., Landry, C. R., Becker, A., et al. (2005). Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics, 6(1), 158. https://doi.org/10.1186/1471-2164-6-158
Giuntini, Elisa, Mengoni, Alessio, De Filippo, Carlotta, Cavalieri, Duccio, Aubin-Horth, Nadia, Landry, Christian R., Becker, Anke, and Bazzicalupo, Marco. 2005. “Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains”. BMC Genomics 6 (1): 158.
Giuntini, E., Mengoni, A., De Filippo, C., Cavalieri, D., Aubin-Horth, N., Landry, C. R., Becker, A., and Bazzicalupo, M. (2005). Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics 6:158.
Giuntini, E., et al., 2005. Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics, 6(1): 158.
E. Giuntini, et al., “Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains”, BMC Genomics, vol. 6, 2005, : 158.
Giuntini, E., Mengoni, A., De Filippo, C., Cavalieri, D., Aubin-Horth, N., Landry, C.R., Becker, A., Bazzicalupo, M.: Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics. 6, : 158 (2005).
Giuntini, Elisa, Mengoni, Alessio, De Filippo, Carlotta, Cavalieri, Duccio, Aubin-Horth, Nadia, Landry, Christian R., Becker, Anke, and Bazzicalupo, Marco. “Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains”. BMC Genomics 6.1 (2005): 158.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
c517712dcb5408fdea056e5c6f860520


24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Divergent genes in potential inoculant Sinorhizobium strains are related to DNA replication, recombination, and repair.
Penttinen P, Greco D, Muntyan V, Terefework Z, De Lajudie P, Roumiantseva M, Becker A, Auvinen P, Lindström K., J Basic Microbiol 56(6), 2016
PMID: 26879331
Genomic characterization of Sinorhizobium meliloti AK21, a wild isolate from the Aral Sea Region.
Molina-Sánchez MD, López-Contreras JA, Toro N, Fernández-López M., Springerplus 4(), 2015
PMID: 26090306
Hsp12p and PAU genes are involved in ecological interactions between natural yeast strains.
Rivero D, Berná L, Stefanini I, Baruffini E, Bergerat A, Csikász-Nagy A, De Filippo C, Cavalieri D., Environ Microbiol 17(8), 2015
PMID: 26079802
Biogeography of Sinorhizobium meliloti nodulating alfalfa in different Croatian regions.
Donnarumma F, Bazzicalupo M, Blažinkov M, Mengoni A, Sikora S, Babić KH., Res Microbiol 165(7), 2014
PMID: 24959651
Replicon-dependent bacterial genome evolution: the case of Sinorhizobium meliloti.
Galardini M, Pini F, Bazzicalupo M, Biondi EG, Mengoni A., Genome Biol Evol 5(3), 2013
PMID: 23431003
Permanent draft genome sequences of the symbiotic nitrogen fixing Ensifer meliloti strains BO21CC and AK58.
Galardini M, Bazzicalupo M, Biondi E, Brambilla E, Brilli M, Bruce D, Chain P, Chen A, Daligault H, Davenport KW, Deshpande S, Detter JC, Goodwin LA, Han C, Han J, Huntemann M, Ivanova N, Klenk HP, Kyrpides NC, Markowitz V, Mavrommatis K, Mocali S, Nolan M, Pagani I, Pati A, Pini F, Pitluck S, Spini G, Szeto E, Teshima H, Woyke T, Mengoni A., Stand Genomic Sci 9(2), 2013
PMID: 24976889
Population genomics of the facultatively mutualistic bacteria Sinorhizobium meliloti and S. medicae.
Epstein B, Branca A, Mudge J, Bharti AK, Briskine R, Farmer AD, Sugawara M, Young ND, Sadowsky MJ, Tiffin P., PLoS Genet 8(8), 2012
PMID: 22876202
Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons.
Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, Fan B, Pukall R, Schumann P, Spröer C, Junge H, Vater J, Pühler A, Klenk HP., Int J Syst Evol Microbiol 61(pt 8), 2011
PMID: 20817842
Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates.
Bailly X, Giuntini E, Sexton MC, Lower RP, Harrison PW, Kumar N, Young JP., ISME J 5(11), 2011
PMID: 21562597
Exploring the symbiotic pangenome of the nitrogen-fixing bacterium Sinorhizobium meliloti.
Galardini M, Mengoni A, Brilli M, Pini F, Fioravanti A, Lucas S, Lapidus A, Cheng JF, Goodwin L, Pitluck S, Land M, Hauser L, Woyke T, Mikhailova N, Ivanova N, Daligault H, Bruce D, Detter C, Tapia R, Han C, Teshima H, Mocali S, Bazzicalupo M, Biondi EG., BMC Genomics 12(), 2011
PMID: 21569405
Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli.
González V, Acosta JL, Santamaría RI, Bustos P, Fernández JL, Hernández González IL, Díaz R, Flores M, Palacios R, Mora J, Dávila G., Appl Environ Microbiol 76(5), 2010
PMID: 20048063
Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501.
Yan Y, Ping S, Peng J, Han Y, Li L, Yang J, Dou Y, Li Y, Fan H, Fan Y, Li D, Zhan Y, Chen M, Lu W, Zhang W, Cheng Q, Jin Q, Lin M., BMC Genomics 11(), 2010
PMID: 20053297
Using comparative genomic hybridization to survey genomic sequence divergence across species: a proof-of-concept from Drosophila.
Renn SC, Machado HE, Jones A, Soneji K, Kulathinal RJ, Hofmann HA., BMC Genomics 11(), 2010
PMID: 20429934
Genomic comparison of Bradyrhizobium japonicum strains with different symbiotic nitrogen-fixing capabilities and other Bradyrhizobiaceae members.
Itakura M, Saeki K, Omori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Honnma K, Fujita K, Iwata H, Saeki Y, Hara Y, Ikeda S, Eda S, Mitsui H, Minamisawa K., ISME J 3(3), 2009
PMID: 18971963
Development of real-time PCR assay for detection and quantification of Sinorhizobium meliloti in soil and plant tissue.
Trabelsi D, Pini F, Aouani ME, Bazzicalupo M, Mengoni A., Lett Appl Microbiol 48(3), 2009
PMID: 19207854
The alpha-proteobacteria: the Darwin finches of the bacterial world.
Ettema TJ, Andersson SG., Biol Lett 5(3), 2009
PMID: 19324639
Metabolic capacity of Sinorhizobium (Ensifer) meliloti strains as determined by phenotype MicroArray analysis.
Biondi EG, Tatti E, Comparini D, Giuntini E, Mocali S, Giovannetti L, Bazzicalupo M, Mengoni A, Viti C., Appl Environ Microbiol 75(16), 2009
PMID: 19561177
Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti.
Guo H, Sun S, Eardly B, Finan T, Xu J., Genome 52(10), 2009
PMID: 19935910
Comparative genomic hybridisation and ultrafast pyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomes of the model strain Rm1021 and the field isolate SM11.
Stiens M, Becker A, Bekel T, Gödde V, Goesmann A, Niehaus K, Schneiker-Bekel S, Selbitschka W, Weidner S, Schlüter A, Pühler A., J Biotechnol 136(1-2), 2008
PMID: 18562031
Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.
Ríos G, Naranjo MA, Iglesias DJ, Ruiz-Rivero O, Geraud M, Usach A, Talón M., BMC Genomics 9(), 2008
PMID: 18691431
Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species.
Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G., J Bacteriol 189(14), 2007
PMID: 17496100

49 References

Daten bereitgestellt von Europe PubMed Central.


Varnam AH, Evans M., 2000
[The genome of alpha-proteobacteria : complexity, reduction, diversity and fluidity].
Teyssier C, Marchandin H, Jumas-Bilak E., Can. J. Microbiol. 50(6), 2004
PMID: 15284884
Evolution of bacterial pathogenesis.
Ziebuhr W, Ohlsen K, Karch H, Korhonen T, Hacker J., Cell. Mol. Life Sci. 56(9-10), 1999
PMID: 11212331
Comparative genomics of closely related salmonellae.
Edwards RA, Olsen GJ, Maloy SR., Trends Microbiol. 10(2), 2002
PMID: 11827811
Microbial degradation of hydrocarbons in the environment.
Leahy JG, Colwell RR., Microbiol. Rev. 54(3), 1990
PMID: 2215423
Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors.
Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D., Science 258(5083), 1992
PMID: 1359641
Comparative genomics of BCG vaccines by whole-genome DNA microarray.
Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM., Science 284(5419), 1999
PMID: 10348738
A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains.
Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121067
DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes.
Murray AE, Lies D, Li G, Nealson K, Zhou J, Tiedje JM., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11493693
Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections.
Beres SB, Sylva GL, Sturdevant DE, Granville CN, Liu M, Ricklefs SM, Whitney AR, Parkins LD, Hoe NP, Adams GJ, Low DE, DeLeo FR, McGeer A, Musser JM., Proc. Natl. Acad. Sci. U.S.A. 101(32), 2004
PMID: 15282372
Comparative genomics of Staphylococcus aureus musculoskeletal isolates.
Cassat JE, Dunman PM, McAleese F, Murphy E, Projan SJ, Smeltzer MS., J. Bacteriol. 187(2), 2005
PMID: 15629929
Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis.
Broekhuijsen M, Larsson P, Johansson A, Bystrom M, Eriksson U, Larsson E, Prior RG, Sjostedt A, Titball RW, Forsman M., J. Clin. Microbiol. 41(7), 2003
PMID: 12843022
Comparing genomes within the species Mycobacterium tuberculosis.
Kato-Maeda M, Rhee JT, Gingeras TR, Salamon H, Drenkow J, Smittipat N, Small PM., Genome Res. 11(4), 2001
PMID: 11282970
Comparative genomics of Rickettsia prowazekii Madrid E and Breinl strains.
Ge H, Chuang YY, Zhao S, Tong M, Tsai MH, Temenak JJ, Richards AL, Ching WM., J. Bacteriol. 186(2), 2004
PMID: 14702324
Identification of signature genes for rapid and specific characterization of Yersinia pestis.
Zhou D, Han Y, Dai E, Pei D, Song Y, Zhai J, Du Z, Wang J, Guo Z, Yang R., Microbiol. Immunol. 48(4), 2004
PMID: 15107536
Bordetella species are distinguished by patterns of substantial gene loss and host adaptation.
Cummings CA, Brinig MM, Lepp PW, van de Pas S, Relman DA., J. Bacteriol. 186(5), 2004
PMID: 14973121
Microarray-based genomic surveying of gene polymorphisms in Chlamydia trachomatis.
Brunelle BW, Nicholson TL, Stephens RS., Genome Biol. 5(6), 2004
PMID: 15186493
Differences in gene content among Salmonella enterica serovar typhi isolates.
Boyd EF, Porwollik S, Blackmer F, McClelland M., J. Clin. Microbiol. 41(8), 2003
PMID: 12904395
Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity.
Taboada EN, Acedillo RR, Carrillo CD, Findlay WA, Medeiros DT, Mykytczuk OL, Roberts MJ, Valencia CA, Farber JM, Nash JH., J. Clin. Microbiol. 42(10), 2004
PMID: 15472310
Detection of a Salmonella enterica serovar California strain spreading in spanish feed mills and genetic characterization with DNA microarrays.
Alvarez J, Porwollik S, Laconcha I, Gisakis V, Vivanco AB, Gonzalez I, Echenagusia S, Zabala N, Blackmer F, McClelland M, Rementeria A, Garaizar J., Appl. Environ. Microbiol. 69(12), 2003
PMID: 14660409
Comparative whole-genome hybridization reveals genomic islands in Brucella species.
Rajashekara G, Glasner JD, Glover DA, Splitter GA., J. Bacteriol. 186(15), 2004
PMID: 15262941
Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity.
Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D, Al-Ghusein H, Barrell BG, Parkhill J, Stoker NG, Karlyshev AV, Butcher PD, Wren BW., Genome Res. 11(10), 2001
PMID: 11591647
Soil Biology of the
Sadowsky MJ, Graham PH., 1998
Physical map of the genome of Rhizobium meliloti 1021.
Honeycutt RJ, McClelland M, Sobral BW., J. Bacteriol. 175(21), 1993
PMID: 8226638
Rhizobium meliloti carries two megaplasmids.
Banfalvi Z, Kondorosi E, Kondorosi A., Plasmid 13(2), 1985
PMID: 2987992
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti.
Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Puhler A., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481431
Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021.
Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E, Dreano S, Gloux S, Godrie T, Goffeau A, Kahn D, Kiss E, Lelaure V, Masuy D, Pohl T, Portetelle D, Puhler A, Purnelle B, Ramsperger U, Renard C, Thebault P, Vandenbol M, Weidner S, Galibert F., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481430
Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti.
Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A., Mol. Gen. Genet. 184(2), 1981
PMID: 6949000
Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti.
Rosenberg C, Boistard P, Denarie J, Casse-Delbart F., Mol. Gen. Genet. 184(2), 1981
PMID: 6949001
Genetic relationship of Sinorhizobium meliloti and Sinorhizobium medicae strains isolated from Caucasian region.
Biondi EG, Pilli E, Giuntini E, Roumiantseva ML, Andronov EE, Onichtchouk OP, Kurchak ON, Simarov BV, Dzyubenko NI, Mengoni A, Bazzicalupo M., FEMS Microbiol. Lett. 220(2), 2003
PMID: 12670682
Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils.
Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M., Appl. Environ. Microbiol. 66(11), 2000
PMID: 11055924
Diversity of Sinorhizobium meliloti from the Central Asian Alfalfa Gene Center.
Roumiantseva ML, Andronov EE, Sharypova LA, Dammann-Kalinowski T, Keller M, Young JP, Simarov BV., Appl. Environ. Microbiol. 68(9), 2002
PMID: 12200335
Genetic diversity of Sinorhizobium populations recovered from different medicago varieties cultivated in Tunisian soils.
Jebara M, Mhamdi R, Aouani ME, Ghrir R, Mars M., Can. J. Microbiol. 47(2), 2001
PMID: 11261493
Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties.
Paffetti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M., Appl. Environ. Microbiol. 62(7), 1996
PMID: 8779566
Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex?
Souza V, Nguyen TT, Hudson RR, Pinero D, Lenski RE., Proc. Natl. Acad. Sci. U.S.A. 89(17), 1992
PMID: 1518873
ISRm10: a new insertion sequence of Sinorhizobium meliloti: nucleotide sequence and geographic distribution.
Biondi EG, Fancelli S, Bazzicalupo M., FEMS Microbiol. Lett. 181(1), 1999
PMID: 10564804
IS Rm31, a new insertion sequence of the IS 66 family in Sinorhizobium meliloti.
Biondi EG, Femia AP, Favilli F, Bazzicalupo M., Arch. Microbiol. 180(2), 2003
PMID: 12819859
Shaping bacterial genomes with integrative and conjugative elements.
Burrus V, Waldor MK., Res. Microbiol. 155(5), 2004
PMID: 15207870
Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability.
Oresnik IJ, Liu SL, Yost CK, Hynes MF., J. Bacteriol. 182(12), 2000
PMID: 10852892
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Genome-wide analysis of DNA copy-number changes using cDNA microarrays.
Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO., Nat. Genet. 23(1), 1999
PMID: 10471496

AUTHOR UNKNOWN, 2004
Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
Smyth GK., 2004

Bradley JV., 1968
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 16283928
PubMed | Europe PMC

Suchen in

Google Scholar