Synaptic interactions increase optic flow specificity

Horstmann W, Egelhaaf M, Warzecha A-K (2000)
European journal of neuroscience 12(6): 2157-2165.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Representations of optic flow are encoded in fly tangential neurons by pooling the signals of many retinotopically organized local motion-sensitive inputs as well as of other tangential cells originating in the ipsi- and contralateral half of the brain. In the so called HSE cell, a neuron involved in optomotor course control, two contralateral input elements, the H1 and H2 cells, mediate distinct EPSPs. These EPSPs frequently elicit spike-like depolarizations in the HSE cell. The synaptic transmission between the H2 and the HSE cell is analysed in detail and shown to be very reliable with respect to the amplitude and time-course of the postsynaptic potential. As a consequence of its synaptic input, the HSE cell responds best to wide-field motion, such as that generated on the eyes when the animal turns about its vertical body axis. It is shown that the specificity of the HSE cell for this type of optic flow is much enhanced if rapid membrane depolarizations, such as large-amplitude EPSPs or spike-like depolarizations, are taken into account rather than the average membrane potential.
Stichworte
Motion vision; Reliability; Fly; Neural coding
Erscheinungsjahr
2000
Zeitschriftentitel
European journal of neuroscience
Band
12
Ausgabe
6
Seite(n)
2157-2165
ISSN
0953-816X
eISSN
1460-9568
Page URI
https://pub.uni-bielefeld.de/record/1773526

Zitieren

Horstmann W, Egelhaaf M, Warzecha A-K. Synaptic interactions increase optic flow specificity. European journal of neuroscience. 2000;12(6):2157-2165.
Horstmann, W., Egelhaaf, M., & Warzecha, A. - K. (2000). Synaptic interactions increase optic flow specificity. European journal of neuroscience, 12(6), 2157-2165. https://doi.org/10.1046/j.1460-9568.2000.00094.x
Horstmann, Wolfram, Egelhaaf, Martin, and Warzecha, Anne-Kathrin. 2000. “Synaptic interactions increase optic flow specificity”. European journal of neuroscience 12 (6): 2157-2165.
Horstmann, W., Egelhaaf, M., and Warzecha, A. - K. (2000). Synaptic interactions increase optic flow specificity. European journal of neuroscience 12, 2157-2165.
Horstmann, W., Egelhaaf, M., & Warzecha, A.-K., 2000. Synaptic interactions increase optic flow specificity. European journal of neuroscience, 12(6), p 2157-2165.
W. Horstmann, M. Egelhaaf, and A.-K. Warzecha, “Synaptic interactions increase optic flow specificity”, European journal of neuroscience, vol. 12, 2000, pp. 2157-2165.
Horstmann, W., Egelhaaf, M., Warzecha, A.-K.: Synaptic interactions increase optic flow specificity. European journal of neuroscience. 12, 2157-2165 (2000).
Horstmann, Wolfram, Egelhaaf, Martin, and Warzecha, Anne-Kathrin. “Synaptic interactions increase optic flow specificity”. European journal of neuroscience 12.6 (2000): 2157-2165.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
49911730761f9121c5928297ed865a0c


27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Cooperative integration and representation underlying bilateral network of fly motion-sensitive neurons.
Suzuki Y, Morimoto T, Miyakawa H, Aonishi T., PLoS One 9(1), 2014
PMID: 24465711
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu Rev Neurosci 33(), 2010
PMID: 20225934
Processing of horizontal optic flow in three visual interneurons of the Drosophila brain.
Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF., J Neurophysiol 103(3), 2010
PMID: 20089816
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly.
Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(5), 2005
PMID: 15776269
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12), 2005
PMID: 16133502
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res 43(7), 2003
PMID: 12639604
Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions.
Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(5), 2003
PMID: 12720032
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938
Vision in flying insects.
Egelhaaf M, Kern R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490262
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J Neurophysiol 85(2), 2001
PMID: 11160507
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534

60 References

Daten bereitgestellt von Europe PubMed Central.

Synaptic vesicle docking and fusion.
Bajjalieh SM., Curr. Opin. Neurobiol. 9(3), 1999
PMID: 10395572
Synaptic noise and other sources of randomness in motoneuron interspike intervals.
Calvin WH, Stevens CF., J. Neurophysiol. 31(4), 1968
PMID: 5709873

Collett, 1975

Dahmen, 1997
MST neurons respond to optic flow and translational movement.
Duffy CJ., J. Neurophysiol. 80(4), 1998
PMID: 9772241
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system
Egelhaaf, Biol. Cybern 52(), 1985
Dynamic properties of two control systems underlying visually guided turning in house-flies
Egelhaaf, J. Comp. Physiol. A 161(), 1987
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651

Egelhaaf, 1993
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Untersuchungen über das Bewegungssehen bei Libellenlarven, Fliegen und Fischen
Gaffron, Z. Vergl. Physiol. 20(), 1934
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons
Geiger, Biol. Cybern. 44(), 1982

AUTHOR UNKNOWN, 0
Amplification of high frequency synaptic inputs by active dendritic membrane processes
Haag, Nature 379(), 1996

AUTHOR UNKNOWN, 0
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen, Verh. Dtsch. Zool. Ges 74(), 1981
Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals
Hausen, Biol. Cybern. 45(), 1982
Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: Receptive field organization and response characteristics
Hausen, Biol. Cybern 46(), 1982

Hausen, 1989
Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala
Hausen, Proc. R. Soc. Lond. B 219(), 1983

Heide, 1983
Optomotor-blind - a Drosophila mutant of the lobula plate giant neurons
Heisenberg, J. Comp. Physiol. 124(), 1978

Hengstenberg, 1998
Zur Physiologie des Formen- und Bewegungssehens I. Optomotorische Versuche an Fliegen
Hertz, Z. Vergl. Physiol. 20(), 1934

Horstmann, 1999
Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera
Ibbotson, J. Comp. Physiol. A 168(), 1991
Response characteristics of four wide-field motion-sensitive descending interneurons in Apis mellifera
Ibbotson, J. Exp. Biol. 148(), 1990
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323

Koch, 1999
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
The metabolic cost of neural information.
Laughlin SB, de Ruyter van Steveninck RR, Anderson JC., Nat. Neurosci. 1(1), 1998
PMID: 10195106
Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc. R. Soc. Lond. B 225(), 1985
Temporal dynamics of graded synaptic transmission in the lobster stomatogastric ganglion.
Manor Y, Nadim F, Abbott LF, Marder E., J. Neurosci. 17(14), 1997
PMID: 9204942
Optical detection of synaptic vesicle exocytosis and endocytosis.
Murthy VN., Curr. Opin. Neurobiol. 9(3), 1999
PMID: 10395575
Seeing what is coming: building collision-sensitive neurones.
Rind FC, Simmons PJ., Trends Neurosci. 22(5), 1999
PMID: 10322494

Roberts, 1981
The accessory optic system of rabbit. II. Spatial organization of direction selectivity.
Simpson JI, Leonard CS, Soodak RE., J. Neurophysiol. 60(6), 1988
PMID: 3236061

Strausfeld, 1976

Strausfeld, 1989
Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways.
Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L., J. Comp. Neurol. 361(2), 1995
PMID: 8543664
Tonic transmitter release in a graded potential synapse.
Uusitalo RO, Juusola M, Kouvalainen E, Weckstrom M., J. Neurophysiol. 74(1), 1995
PMID: 7472349
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Common reference frame for neural coding of translational and rotational optic flow.
Wylie DR, Bischof WF, Frost BJ., Nature 392(6673), 1998
PMID: 9521321
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 10886355
PubMed | Europe PMC

Suchen in

Google Scholar