Neural coding with graded membrane potential changes and spikes

Kretzberg J, Warzecha A-K, Egelhaaf M (2001)
Journal of computational neuroscience 11(2): 153-164.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
The neural encoding of sensory stimuli is usually investigated for spike responses, although many neurons are known to convey information by graded membrane potential changes. We compare by model simulations how well different dynamical stimuli can be discriminated on the basis of spiking or graded responses. Although a continuously varying membrane potential contains more information than binary spike trains, we find situations where different stimuli can be better discriminated on the basis of spike responses than on the basis of graded responses. Spikes can be superior to graded membrane potential fluctuations if spikes sharpen the temporal structure of neuronal responses by amplifying fast transients of the membrane potential. Such fast membrane potential changes can be induced deterministically by the stimulus or can be due to membrane potential noise that is influenced in its statistical properties by the stimulus. The graded response mode is superior for discrimination between stimuli on a fine time scale.
Erscheinungsjahr
Zeitschriftentitel
Journal of computational neuroscience
Band
11
Ausgabe
2
Seite(n)
153-164
ISSN
PUB-ID

Zitieren

Kretzberg J, Warzecha A-K, Egelhaaf M. Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience. 2001;11(2):153-164.
Kretzberg, J., Warzecha, A. - K., & Egelhaaf, M. (2001). Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience, 11(2), 153-164. doi:10.1023/A:1012845700075
Kretzberg, J., Warzecha, A. - K., and Egelhaaf, M. (2001). Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience 11, 153-164.
Kretzberg, J., Warzecha, A.-K., & Egelhaaf, M., 2001. Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience, 11(2), p 153-164.
J. Kretzberg, A.-K. Warzecha, and M. Egelhaaf, “Neural coding with graded membrane potential changes and spikes”, Journal of computational neuroscience, vol. 11, 2001, pp. 153-164.
Kretzberg, J., Warzecha, A.-K., Egelhaaf, M.: Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience. 11, 153-164 (2001).
Kretzberg, Jutta, Warzecha, Anne-Kathrin, and Egelhaaf, Martin. “Neural coding with graded membrane potential changes and spikes”. Journal of computational neuroscience 11.2 (2001): 153-164.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-09-20T05:54:36Z

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Non-linear amplification of graded voltage signals in the first-order visual interneurons of the butterfly Papilio xuthus.
Rusanen J, Frolov R, Weckström M, Kinoshita M, Arikawa K., J Exp Biol 221(pt 12), 2018
PMID: 29712749
Discriminability measures and time-frequency features: an application to vibrissal tactile discrimination.
Pizá ÁG, Farfán FD, Albarracín AL, Ruiz GA, Felice CJ., J Neurosci Methods 233(), 2014
PMID: 24937764
Spikes and ribbon synapses in early vision.
Baden T, Euler T, Weckström M, Lagnado L., Trends Neurosci 36(8), 2013
PMID: 23706152
Neural representations of courtship song in the Drosophila brain.
Tootoonian S, Coen P, Kawai R, Murthy M., J Neurosci 32(3), 2012
PMID: 22262877
Temporal and spatial adaptation of transient responses to local features.
O'Carroll DC, Barnett PD, Nordström K., Front Neural Circuits 6(), 2012
PMID: 23087617
The motion after-effect: local and global contributions to contrast sensitivity.
Nordström K, O'Carroll DC., Proc Biol Sci 276(1662), 2009
PMID: 19324825
Information and discriminability as measures of reliability of sensory coding.
Grewe J, Weckström M, Egelhaaf M, Warzecha AK., PLoS One 2(12), 2007
PMID: 18091998

28 References

Daten bereitgestellt von Europe PubMed Central.

Noise in neurons is message dependent.
Cecchi GA, Sigman M, Alonso JM, Martinez L, Chialvo DR, Magnasco MO., Proc. Natl. Acad. Sci. U.S.A. 97(10), 2000
PMID: 10792057
Gauging sensory representations in the brain.
Buracas GT, Albright TD., Trends Neurosci. 22(7), 1999
PMID: 10370254
Neurotransmitter release at ribbon synapses in the retina.
Morgans CW., Immunol. Cell Biol. 78(4), 2000
PMID: 10947871
Discrimination performance of single neurons: rate and temporal-pattern information.
Geisler WS, Albrecht DG, Salvi RJ, Saunders SS., J. Neurophysiol. 66(1), 1991
PMID: 1919675
The coding of information by spiking neurons: an analytical study.
Deco G, Schurmann B., Network 9(3), 1998
PMID: 9861992
Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex.
Anderson J, Lampl I, Reichova I, Carandini M, Ferster D., Nat. Neurosci. 3(6), 2000
PMID: 10816319
The metabolic cost of neural information.
Laughlin SB, de Ruyter van Steveninck RR, Anderson JC., Nat. Neurosci. 1(1), 1998
PMID: 10195106
Nature and precision of temporal coding in visual cortex: a metric-space analysis.
Victor JD, Purpura KP., J. Neurophysiol. 76(2), 1996
PMID: 8871238
Reliability of a fly motion-sensitive neuron depends on stimulus parameters.
Warzecha AK, Kretzberg J, Egelhaaf M., J. Neurosci. 20(23), 2000
PMID: 11102498
Evolution of time coding systems.
Carr CE, Friedman MA., Neural Comput 11(1), 1999
PMID: 9950719
A novel spike distance.
van Rossum MC., Neural Comput 13(4), 2001
PMID: 11255567
Visually evoked oscillations of membrane potential in cells of cat visual cortex.
Jagadeesh B, Gray CM, Ferster D., Science 257(5069), 1992
PMID: 1636094
Sense and the single neuron: probing the physiology of perception.
Parker AJ, Newsome WT., Annu. Rev. Neurosci. 21(), 1998
PMID: 9530497
Who reads temporal information contained across synchronized and oscillatory spike trains?
MacLeod K, Backer A, Laurent G., Nature 395(6703), 1998
PMID: 9790189
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Principles of rhythmic motor pattern generation.
Marder E, Calabrese RL., Physiol. Rev. 76(3), 1996
PMID: 8757786
Input synchrony and the irregular firing of cortical neurons.
Stevens CF, Zador AM., Nat. Neurosci. 1(3), 1998
PMID: 10195145
Reliability of spike timing in neocortical neurons.
Mainen ZF, Sejnowski TJ., Science 268(5216), 1995
PMID: 7770778
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli.
Mechler F, Victor JD, Purpura KP, Shapley R., J. Neurosci. 18(16), 1998
PMID: 9698345

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 11717531
PubMed | Europe PMC

Suchen in

Google Scholar