Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life
Kurtz R, Egelhaaf M (2003)
Molecular neurobiology 27(1): 13-32.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Autor*in
Einrichtung
Abstract / Bemerkung
Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.
Stichworte
adaptation;
cricket cercal system;
in vivo stimulation;
motion vision;
photoreceptor;
sensory coding;
synaptic transmission;
temporal filtering;
calcium imaging;
dendritic processing
Erscheinungsjahr
2003
Zeitschriftentitel
Molecular neurobiology
Band
27
Ausgabe
1
Seite(n)
13-32
ISSN
0893-7648
Page URI
https://pub.uni-bielefeld.de/record/1773503
Zitieren
Kurtz R, Egelhaaf M. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology. 2003;27(1):13-32.
Kurtz, R., & Egelhaaf, M. (2003). Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology, 27(1), 13-32. https://doi.org/10.1385/MN:27:1:13
Kurtz, Rafael, and Egelhaaf, Martin. 2003. “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”. Molecular neurobiology 27 (1): 13-32.
Kurtz, R., and Egelhaaf, M. (2003). Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology 27, 13-32.
Kurtz, R., & Egelhaaf, M., 2003. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology, 27(1), p 13-32.
R. Kurtz and M. Egelhaaf, “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”, Molecular neurobiology, vol. 27, 2003, pp. 13-32.
Kurtz, R., Egelhaaf, M.: Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology. 27, 13-32 (2003).
Kurtz, Rafael, and Egelhaaf, Martin. “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”. Molecular neurobiology 27.1 (2003): 13-32.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
7684dd5765b059c4180ea877bd7a822d
Daten bereitgestellt von European Bioinformatics Institute (EBI)
3 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.
Fotowat H, Harrison RR, Krahe R., J Neurosci 33(34), 2013
PMID: 23966697
Fotowat H, Harrison RR, Krahe R., J Neurosci 33(34), 2013
PMID: 23966697
Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow.
Liang P, Kern R, Kurtz R, Egelhaaf M., J Neurophysiol 105(4), 2011
PMID: 21307322
Liang P, Kern R, Kurtz R, Egelhaaf M., J Neurophysiol 105(4), 2011
PMID: 21307322
Pedal neuron 3 serves a significant role in effecting turning during crawling by the marine slug Tritonia diomedea (Bergh).
Redondo RL, Murray JA., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(5), 2005
PMID: 15778839
Redondo RL, Murray JA., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(5), 2005
PMID: 15778839
84 References
Daten bereitgestellt von Europe PubMed Central.
Neural processing of naturalistic optic flow.
Kern R, Petereit C, Egelhaaf M., J. Neurosci. 21(8), 2001
PMID: 11306645
Kern R, Petereit C, Egelhaaf M., J. Neurosci. 21(8), 2001
PMID: 11306645
Neurotransmitter release at ribbon synapses in the retina.
Morgans CW., Immunol. Cell Biol. 78(4), 2000
PMID: 10947871
Morgans CW., Immunol. Cell Biol. 78(4), 2000
PMID: 10947871
Light adaptation in Drosophila photoreceptors: II. Rising temperature increases the bandwidth of reliable signaling.
Juusola M, Hardie RC., J. Gen. Physiol. 117(1), 2001
PMID: 11134229
Juusola M, Hardie RC., J. Gen. Physiol. 117(1), 2001
PMID: 11134229
Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current.
Witkovsky P, Schmitz Y, Akopian A, Krizaj D, Tranchina D., J. Neurosci. 17(19), 1997
PMID: 9295376
Witkovsky P, Schmitz Y, Akopian A, Krizaj D, Tranchina D., J. Neurosci. 17(19), 1997
PMID: 9295376
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux.
Gleason E, Borges S, Wilson M., Neuron 13(5), 1994
PMID: 7524563
Gleason E, Borges S, Wilson M., Neuron 13(5), 1994
PMID: 7524563
Using miniature sensor coils for simultaneous measurement of orientation and position of small, fast-moving animals.
Schilstra C, van Hateren JH., J. Neurosci. Methods 83(2), 1998
PMID: 9765125
Schilstra C, van Hateren JH., J. Neurosci. Methods 83(2), 1998
PMID: 9765125
Neuronal representation of optic flow experienced by unilaterally blinded flies on their mean walking trajectories.
Kern R, Lutterklas M, Egelhaaf M., J. Comp. Physiol. A 186(5), 2000
PMID: 10879949
Kern R, Lutterklas M, Egelhaaf M., J. Comp. Physiol. A 186(5), 2000
PMID: 10879949
Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly.
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron.
Ogawa H, Baba Y, Oka K., Neurosci. Lett. 275(1), 1999
PMID: 10554985
Ogawa H, Baba Y, Oka K., Neurosci. Lett. 275(1), 1999
PMID: 10554985
Transmission at voltage-clamped giant synapse of the squid: evidence for cooperativity of presynaptic calcium action.
Smith SJ, Augustine GJ, Charlton MP., Proc. Natl. Acad. Sci. U.S.A. 82(2), 1985
PMID: 2982166
Smith SJ, Augustine GJ, Charlton MP., Proc. Natl. Acad. Sci. U.S.A. 82(2), 1985
PMID: 2982166
Transfer of visual motion information via graded synapses operates linearly in the natural activity range.
Kurtz R, Warzecha AK, Egelhaaf M., J. Neurosci. 21(17), 2001
PMID: 11517283
Kurtz R, Warzecha AK, Egelhaaf M., J. Neurosci. 21(17), 2001
PMID: 11517283
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
An analysis of the end-plate potential recorded with an intracellular electrode.
FATT P, KATZ B., J. Physiol. (Lond.) 115(3), 1951
PMID: 14898516
FATT P, KATZ B., J. Physiol. (Lond.) 115(3), 1951
PMID: 14898516
Synaptic limitations to contrast coding in the retina of the blowfly Calliphora.
Laughlin SB, Howard J, Blakeslee B., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892202
Laughlin SB, Howard J, Blakeslee B., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892202
Intracellular calcium dependence of transmitter release rates at a fast central synapse.
Schneggenburger R, Neher E., Nature 406(6798), 2000
PMID: 10972290
Schneggenburger R, Neher E., Nature 406(6798), 2000
PMID: 10972290
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo.
Fortune ES, Rose GJ., J. Neurosci. 17(10), 1997
PMID: 9133400
Fortune ES, Rose GJ., J. Neurosci. 17(10), 1997
PMID: 9133400
Dendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo.
Kurtz R, Durr V, Egelhaaf M., J. Neurophysiol. 84(4), 2000
PMID: 11024084
Kurtz R, Durr V, Egelhaaf M., J. Neurophysiol. 84(4), 2000
PMID: 11024084
Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C.
Juusola M, Hardie RC., J. Gen. Physiol. 117(1), 2001
PMID: 11134228
Juusola M, Hardie RC., J. Gen. Physiol. 117(1), 2001
PMID: 11134228
Spike-dependent calcium influx in dendrites of the cricket giant interneuron.
Ogawa H, Baba Y, Oka K., J. Neurobiol. 44(1), 2000
PMID: 10880131
Ogawa H, Baba Y, Oka K., J. Neurobiol. 44(1), 2000
PMID: 10880131
Signal clipping by the rod output synapse.
Attwell D, Borges S, Wu SM, Wilson M., Nature 328(6130), 1987
PMID: 3039370
Attwell D, Borges S, Wu SM, Wilson M., Nature 328(6130), 1987
PMID: 3039370
In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation.
Sobel EC, Tank DW., Science 263(5148), 1994
PMID: 17770837
Sobel EC, Tank DW., Science 263(5148), 1994
PMID: 17770837
Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse.
Beutner D, Voets T, Neher E, Moser T., Neuron 29(3), 2001
PMID: 11301027
Beutner D, Voets T, Neher E, Moser T., Neuron 29(3), 2001
PMID: 11301027
Short-term synaptic plasticity as a temporal filter.
Fortune ES, Rose GJ., Trends Neurosci. 24(7), 2001
PMID: 11410267
Fortune ES, Rose GJ., Trends Neurosci. 24(7), 2001
PMID: 11410267
Neuronal KCNQ potassium channels: physiology and role in disease.
Jentsch TJ., Nat. Rev. Neurosci. 1(1), 2000
PMID: 11252765
Jentsch TJ., Nat. Rev. Neurosci. 1(1), 2000
PMID: 11252765
Place units in the hippocampus of the freely moving rat.
O'Keefe J., Exp. Neurol. 51(1), 1976
PMID: 1261644
O'Keefe J., Exp. Neurol. 51(1), 1976
PMID: 1261644
In vivo calcium accumulation in presynaptic and postsynaptic dendrites of visual interneurons.
Durr V, Egelhaaf M., J. Neurophysiol. 82(6), 1999
PMID: 10601464
Durr V, Egelhaaf M., J. Neurophysiol. 82(6), 1999
PMID: 10601464
Ca(2+)-activated K+ currents in neurones: types, physiological roles and modulation.
Sah P., Trends Neurosci. 19(4), 1996
PMID: 8658599
Sah P., Trends Neurosci. 19(4), 1996
PMID: 8658599
Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics.
Durr V, Kurtz R, Egelhaaf M., J. Neurobiol. 46(4), 2001
PMID: 11180156
Durr V, Kurtz R, Egelhaaf M., J. Neurobiol. 46(4), 2001
PMID: 11180156
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information.
Fortune ES, Rose GJ., J. Neurosci. 20(18), 2000
PMID: 10995860
Fortune ES, Rose GJ., J. Neurosci. 20(18), 2000
PMID: 10995860
Presynaptic calcium is increased during normal synaptic transmission and paired-pulse facilitation, but not in long-term potentiation in area CA1 of hippocampus.
Wu LG, Saggau P., J. Neurosci. 14(2), 1994
PMID: 7905515
Wu LG, Saggau P., J. Neurosci. 14(2), 1994
PMID: 7905515
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Calcium channel isoforms underlying synaptic transmission at embryonic Xenopus neuromuscular junctions.
Thaler C, Li W, Brehm P., J. Neurosci. 21(2), 2001
PMID: 11160422
Thaler C, Li W, Brehm P., J. Neurosci. 21(2), 2001
PMID: 11160422
New techniques for making whole-cell recordings from CNS neurons in vivo.
Rose GJ, Fortune ES., Neurosci. Res. 26(1), 1996
PMID: 8895897
Rose GJ, Fortune ES., Neurosci. Res. 26(1), 1996
PMID: 8895897
Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron.
Jacobs GA, Miller JP, Murphey RK., J. Neurosci. 6(8), 1986
PMID: 3746411
Jacobs GA, Miller JP, Murphey RK., J. Neurosci. 6(8), 1986
PMID: 3746411
A light-dependent increase in free Ca2+ concentration in the salamander rod outer segment.
Matthews HR, Fain GL., J. Physiol. (Lond.) 532(Pt 2), 2001
PMID: 11306652
Matthews HR, Fain GL., J. Physiol. (Lond.) 532(Pt 2), 2001
PMID: 11306652
SNARE proteins contribute to calcium cooperativity of synaptic transmission.
Stewart BA, Mohtashami M, Trimble WS, Boulianne GL., Proc. Natl. Acad. Sci. U.S.A. 97(25), 2000
PMID: 11095753
Stewart BA, Mohtashami M, Trimble WS, Boulianne GL., Proc. Natl. Acad. Sci. U.S.A. 97(25), 2000
PMID: 11095753
Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses.
Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B., J. Neurosci. 19(2), 1999
PMID: 9880593
Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B., J. Neurosci. 19(2), 1999
PMID: 9880593
Active membrane properties and signal encoding in graded potential neurons.
Haag J, Borst A., J. Neurosci. 18(19), 1998
PMID: 9742164
Haag J, Borst A., J. Neurosci. 18(19), 1998
PMID: 9742164
Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons.
Haag J, Borst A., J. Neurophysiol. 83(2), 2000
PMID: 10669515
Haag J, Borst A., J. Neurophysiol. 83(2), 2000
PMID: 10669515
The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities.
French AS, Korenberg MJ, Jarvilehto M, Kouvalainen E, Juusola M, Weckstrom M., Biophys. J. 65(2), 1993
PMID: 8218908
French AS, Korenberg MJ, Jarvilehto M, Kouvalainen E, Juusola M, Weckstrom M., Biophys. J. 65(2), 1993
PMID: 8218908
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina.
Howard J, Blakeslee B, Laughlin SB., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892201
Howard J, Blakeslee B, Laughlin SB., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892201
A simple coding procedure enhances a neuron's information capacity.
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron.
Qian J, Noebels JL., J. Neurosci. 21(11), 2001
PMID: 11356859
Qian J, Noebels JL., J. Neurosci. 21(11), 2001
PMID: 11356859
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: II. Active membrane properties.
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Haag J, Theunissen F, Borst A., J Comput Neurosci 4(4), 1997
PMID: 9427120
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Co-operative action a calcium ions in transmitter release at the neuromuscular junction.
Dodge FA Jr, Rahamimoff R., J. Physiol. (Lond.) 193(2), 1967
PMID: 6065887
Dodge FA Jr, Rahamimoff R., J. Physiol. (Lond.) 193(2), 1967
PMID: 6065887
Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation.
Weckstrom M, Hardie RC, Laughlin SB., J. Physiol. (Lond.) 440(), 1991
PMID: 1804980
Weckstrom M, Hardie RC, Laughlin SB., J. Physiol. (Lond.) 440(), 1991
PMID: 1804980
Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus.
Ogawa H, Baba Y, Oka K., Neurosci. Lett. 219(1), 1996
PMID: 8961294
Ogawa H, Baba Y, Oka K., Neurosci. Lett. 219(1), 1996
PMID: 8961294
Expression of the alpha1F calcium channel subunit by photoreceptors in the rat retina.
Morgans CW, Gaughwin P, Maleszka R., Mol. Vis. 7(), 2001
PMID: 11526344
Morgans CW, Gaughwin P, Maleszka R., Mol. Vis. 7(), 2001
PMID: 11526344
Inability of rhesus monkey area V1 to discriminate between self-induced and externally induced retinal image slip.
Ilg UJ, Thier P., Eur. J. Neurosci. 8(6), 1996
PMID: 8752585
Ilg UJ, Thier P., Eur. J. Neurosci. 8(6), 1996
PMID: 8752585
Calcium and light adaptation in retinal rods and cones.
Nakatani K, Yau KW., Nature 334(6177), 1988
PMID: 3386743
Nakatani K, Yau KW., Nature 334(6177), 1988
PMID: 3386743
Intracellular Ca2+ dynamics during spontaneous and evoked activity of leech heart interneurons: low-threshold Ca currents and graded synaptic transmission.
Ivanov AI, Calabrese RL., J. Neurosci. 20(13), 2000
PMID: 10864951
Ivanov AI, Calabrese RL., J. Neurosci. 20(13), 2000
PMID: 10864951
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment.
Yau KW, Nakatani K., Nature 313(6003), 1985
PMID: 2578628
Yau KW, Nakatani K., Nature 313(6003), 1985
PMID: 2578628
Calcium dependence of the rate of exocytosis in a synaptic terminal.
Heidelberger R, Heinemann C, Neher E, Matthews G., Nature 371(6497), 1994
PMID: 7935764
Heidelberger R, Heinemann C, Neher E, Matthews G., Nature 371(6497), 1994
PMID: 7935764
Visual ecology and voltage-gated ion channels in insect photoreceptors.
Weckstrom M, Laughlin SB., Trends Neurosci. 18(1), 1995
PMID: 7535485
Weckstrom M, Laughlin SB., Trends Neurosci. 18(1), 1995
PMID: 7535485
A model of temporal adaptation in fly motion vision.
Clifford CW, Langley K., Vision Res. 36(16), 1996
PMID: 8917820
Clifford CW, Langley K., Vision Res. 36(16), 1996
PMID: 8917820
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
The morphology of cricket giant interneurons.
Mendenhall B, Murphey RK., J. Neurobiol. 5(6), 1974
PMID: 4436675
Mendenhall B, Murphey RK., J. Neurobiol. 5(6), 1974
PMID: 4436675
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals.
Helmchen F, Fee MS, Tank DW, Denk W., Neuron 31(6), 2001
PMID: 11580892
Helmchen F, Fee MS, Tank DW, Denk W., Neuron 31(6), 2001
PMID: 11580892
Processing of natural time series of intensities by the visual system of the blowfly.
van Hateren JH., Vision Res. 37(23), 1997
PMID: 9425553
van Hateren JH., Vision Res. 37(23), 1997
PMID: 9425553
A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons.
Egelhaaf M, Borst A., J. Neurosci. 13(11), 1993
PMID: 8229185
Egelhaaf M, Borst A., J. Neurosci. 13(11), 1993
PMID: 8229185
Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
Ogawa H, Baba Y, Oka K., J. Neurobiol. 46(4), 2001
PMID: 11180157
Ogawa H, Baba Y, Oka K., J. Neurobiol. 46(4), 2001
PMID: 11180157
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
How does calcium trigger neurotransmitter release?
Augustine GJ., Curr. Opin. Neurobiol. 11(3), 2001
PMID: 11399430
Augustine GJ., Curr. Opin. Neurobiol. 11(3), 2001
PMID: 11399430
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors.
Juusola M, Kouvalainen E, Jarvilehto M, Weckstrom M., J. Gen. Physiol. 104(3), 1994
PMID: 7807062
Juusola M, Kouvalainen E, Jarvilehto M, Weckstrom M., J. Gen. Physiol. 104(3), 1994
PMID: 7807062
Band-pass filtering by voltage-dependent membrane in an insect photoreceptor.
Juusola M, Weckstrom M., Neurosci. Lett. 154(1-2), 1993
PMID: 8361652
Juusola M, Weckstrom M., Neurosci. Lett. 154(1-2), 1993
PMID: 8361652
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Calcium sensitivity of glutamate release in a calyx-type terminal.
Bollmann JH, Sakmann B, Borst JG., Science 289(5481), 2000
PMID: 10937999
Bollmann JH, Sakmann B, Borst JG., Science 289(5481), 2000
PMID: 10937999
Functional properties of individual neuronal branches isolated in situ by laser photoinactivation.
Jacobs GA, Miller JP., Science 228(4697), 1985
PMID: 3983633
Jacobs GA, Miller JP., Science 228(4697), 1985
PMID: 3983633
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
The plasma membrane protein SNAP-25, but not syntaxin, is present at photoreceptor and bipolar cell synapses in the rat retina.
Brandstatter JH, Wassle H, Betz H, Morgans CW., Eur. J. Neurosci. 8(4), 1996
PMID: 9081634
Brandstatter JH, Wassle H, Betz H, Morgans CW., Eur. J. Neurosci. 8(4), 1996
PMID: 9081634
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 12668900
PubMed | Europe PMC
Suchen in