Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life

Kurtz R, Egelhaaf M (2003)
Molecular neurobiology 27(1): 13-32.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Physiological mechanisms of neuronal information processing have been shaped during evolution by a continual interplay between organisms and their sensory surroundings. Thus, when asking for the functional significance of such mechanisms, the natural conditions under which they operate must be considered. This has been done successfully in several studies that employ sensory stimulation under in vivo conditions. These studies address the question of how physiological mechanisms within neurons are properly adjusted to the characteristics of natural stimuli and to the demands imposed on the system being studied. Results from diverse animal models show how neurons exploit natural stimulus statistics efficiently by utilizing specific filtering capacities. Mechanisms that allow neurons to adapt to the currently relevant range from an often immense stimulus spectrum are outlined, and examples are provided that suggest that information transfer between neurons is shaped by the system-specific computational tasks in the behavioral context.
Stichworte
adaptation; cricket cercal system; in vivo stimulation; motion vision; photoreceptor; sensory coding; synaptic transmission; temporal filtering; calcium imaging; dendritic processing
Erscheinungsjahr
2003
Zeitschriftentitel
Molecular neurobiology
Band
27
Ausgabe
1
Seite(n)
13-32
ISSN
0893-7648
Page URI
https://pub.uni-bielefeld.de/record/1773503

Zitieren

Kurtz R, Egelhaaf M. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology. 2003;27(1):13-32.
Kurtz, R., & Egelhaaf, M. (2003). Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology, 27(1), 13-32. https://doi.org/10.1385/MN:27:1:13
Kurtz, Rafael, and Egelhaaf, Martin. 2003. “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”. Molecular neurobiology 27 (1): 13-32.
Kurtz, R., and Egelhaaf, M. (2003). Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology 27, 13-32.
Kurtz, R., & Egelhaaf, M., 2003. Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology, 27(1), p 13-32.
R. Kurtz and M. Egelhaaf, “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”, Molecular neurobiology, vol. 27, 2003, pp. 13-32.
Kurtz, R., Egelhaaf, M.: Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life. Molecular neurobiology. 27, 13-32 (2003).
Kurtz, Rafael, and Egelhaaf, Martin. “Natural patterns of neural activity: how physiological mechanisms are orchestrated to cope with real life”. Molecular neurobiology 27.1 (2003): 13-32.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
7684dd5765b059c4180ea877bd7a822d


3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Pedal neuron 3 serves a significant role in effecting turning during crawling by the marine slug Tritonia diomedea (Bergh).
Redondo RL, Murray JA., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(5), 2005
PMID: 15778839

84 References

Daten bereitgestellt von Europe PubMed Central.

Neural processing of naturalistic optic flow.
Kern R, Petereit C, Egelhaaf M., J. Neurosci. 21(8), 2001
PMID: 11306645
Neurotransmitter release at ribbon synapses in the retina.
Morgans CW., Immunol. Cell Biol. 78(4), 2000
PMID: 10947871
Gain of rod to horizontal cell synaptic transfer: relation to glutamate release and a dihydropyridine-sensitive calcium current.
Witkovsky P, Schmitz Y, Akopian A, Krizaj D, Tranchina D., J. Neurosci. 17(19), 1997
PMID: 9295376
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Transmission at voltage-clamped giant synapse of the squid: evidence for cooperativity of presynaptic calcium action.
Smith SJ, Augustine GJ, Charlton MP., Proc. Natl. Acad. Sci. U.S.A. 82(2), 1985
PMID: 2982166
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
An analysis of the end-plate potential recorded with an intracellular electrode.
FATT P, KATZ B., J. Physiol. (Lond.) 115(3), 1951
PMID: 14898516
Synaptic limitations to contrast coding in the retina of the blowfly Calliphora.
Laughlin SB, Howard J, Blakeslee B., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892202
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805
Spike-dependent calcium influx in dendrites of the cricket giant interneuron.
Ogawa H, Baba Y, Oka K., J. Neurobiol. 44(1), 2000
PMID: 10880131
Signal clipping by the rod output synapse.
Attwell D, Borges S, Wu SM, Wilson M., Nature 328(6130), 1987
PMID: 3039370
Short-term synaptic plasticity as a temporal filter.
Fortune ES, Rose GJ., Trends Neurosci. 24(7), 2001
PMID: 11410267
Neuronal KCNQ potassium channels: physiology and role in disease.
Jentsch TJ., Nat. Rev. Neurosci. 1(1), 2000
PMID: 11252765
Place units in the hippocampus of the freely moving rat.
O'Keefe J., Exp. Neurol. 51(1), 1976
PMID: 1261644
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
New techniques for making whole-cell recordings from CNS neurons in vivo.
Rose GJ, Fortune ES., Neurosci. Res. 26(1), 1996
PMID: 8895897
A light-dependent increase in free Ca2+ concentration in the salamander rod outer segment.
Matthews HR, Fain GL., J. Physiol. (Lond.) 532(Pt 2), 2001
PMID: 11306652
SNARE proteins contribute to calcium cooperativity of synaptic transmission.
Stewart BA, Mohtashami M, Trimble WS, Boulianne GL., Proc. Natl. Acad. Sci. U.S.A. 97(25), 2000
PMID: 11095753
The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities.
French AS, Korenberg MJ, Jarvilehto M, Kouvalainen E, Juusola M, Weckstrom M., Biophys. J. 65(2), 1993
PMID: 8218908
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina.
Howard J, Blakeslee B, Laughlin SB., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892201
A simple coding procedure enhances a neuron's information capacity.
Laughlin S., Z. Naturforsch., C, Biosci. 36(9-10), 1981
PMID: 7303823
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Synaptic ribbons: versatile signal transducers.
von Gersdorff H., Neuron 29(1), 2001
PMID: 11182076
Co-operative action a calcium ions in transmitter release at the neuromuscular junction.
Dodge FA Jr, Rahamimoff R., J. Physiol. (Lond.) 193(2), 1967
PMID: 6065887
Voltage-activated potassium channels in blowfly photoreceptors and their role in light adaptation.
Weckstrom M, Hardie RC, Laughlin SB., J. Physiol. (Lond.) 440(), 1991
PMID: 1804980
Expression of the alpha1F calcium channel subunit by photoreceptors in the rat retina.
Morgans CW, Gaughwin P, Maleszka R., Mol. Vis. 7(), 2001
PMID: 11526344
Calcium and light adaptation in retinal rods and cones.
Nakatani K, Yau KW., Nature 334(6177), 1988
PMID: 3386743
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Calcium dependence of the rate of exocytosis in a synaptic terminal.
Heidelberger R, Heinemann C, Neher E, Matthews G., Nature 371(6497), 1994
PMID: 7935764
Visual ecology and voltage-gated ion channels in insect photoreceptors.
Weckstrom M, Laughlin SB., Trends Neurosci. 18(1), 1995
PMID: 7535485
A model of temporal adaptation in fly motion vision.
Clifford CW, Langley K., Vision Res. 36(16), 1996
PMID: 8917820
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
The morphology of cricket giant interneurons.
Mendenhall B, Murphey RK., J. Neurobiol. 5(6), 1974
PMID: 4436675
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
How does calcium trigger neurotransmitter release?
Augustine GJ., Curr. Opin. Neurobiol. 11(3), 2001
PMID: 11399430
In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation.
Borst A, Egelhaaf M., Proc. Natl. Acad. Sci. U.S.A. 89(9), 1992
PMID: 1570340
Contrast gain, signal-to-noise ratio, and linearity in light-adapted blowfly photoreceptors.
Juusola M, Kouvalainen E, Jarvilehto M, Weckstrom M., J. Gen. Physiol. 104(3), 1994
PMID: 7807062
Band-pass filtering by voltage-dependent membrane in an insect photoreceptor.
Juusola M, Weckstrom M., Neurosci. Lett. 154(1-2), 1993
PMID: 8361652
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Calcium sensitivity of glutamate release in a calyx-type terminal.
Bollmann JH, Sakmann B, Borst JG., Science 289(5481), 2000
PMID: 10937999
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12668900
PubMed | Europe PMC

Suchen in

Google Scholar