Transfer of visual motion information via graded synapses operates linearly in the natural activity range

Kurtz R, Warzecha A-K, Egelhaaf M (2001)
The journal of neuroscience 21(17): 6957-6966.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Synaptic transmission between a graded potential neuron and a spiking neuron was investigated in vivo using sensory stimulation instead of artificial excitation of the presynaptic neuron. During visual motion stimulation, individual presynaptic and postsynaptic neurons in the brain of the fly were electrophysiologically recorded together with concentration changes of presynaptic calcium (Delta[Ca(2+)](pre)). Preferred-direction motion leads to depolarization of the presynaptic neuron. It also produces pronounced increases in [Ca(2+)](pre) and the postsynaptic spike rate. Motion in the opposite direction was associated with hyperpolarization of the presynaptic cell but only a weak reduction in [Ca(2+)](pre) and the postsynaptic spike rate. Apart from this rectification, the relationships between presynaptic depolarizations, Delta[Ca(2+)](pre), and postsynaptic spike rates are, on average, linear over the entire range of activity levels that can be elicited by sensory stimulation. Thus, the inevitably limited range in which the gain of overall synaptic signal transfer is constant appears to be adjusted to sensory input strengths.
Stichworte
Insect; Graded synapse; Calcium cooperativity; Fly; Lobula plate
Erscheinungsjahr
2001
Zeitschriftentitel
The journal of neuroscience
Band
21
Ausgabe
17
Seite(n)
6957-6966
ISSN
0025-8105
Page URI
https://pub.uni-bielefeld.de/record/1773499

Zitieren

Kurtz R, Warzecha A-K, Egelhaaf M. Transfer of visual motion information via graded synapses operates linearly in the natural activity range. The journal of neuroscience. 2001;21(17):6957-6966.
Kurtz, R., Warzecha, A. - K., & Egelhaaf, M. (2001). Transfer of visual motion information via graded synapses operates linearly in the natural activity range. The journal of neuroscience, 21(17), 6957-6966.
Kurtz, Rafael, Warzecha, Anne-Kathrin, and Egelhaaf, Martin. 2001. “Transfer of visual motion information via graded synapses operates linearly in the natural activity range”. The journal of neuroscience 21 (17): 6957-6966.
Kurtz, R., Warzecha, A. - K., and Egelhaaf, M. (2001). Transfer of visual motion information via graded synapses operates linearly in the natural activity range. The journal of neuroscience 21, 6957-6966.
Kurtz, R., Warzecha, A.-K., & Egelhaaf, M., 2001. Transfer of visual motion information via graded synapses operates linearly in the natural activity range. The journal of neuroscience, 21(17), p 6957-6966.
R. Kurtz, A.-K. Warzecha, and M. Egelhaaf, “Transfer of visual motion information via graded synapses operates linearly in the natural activity range”, The journal of neuroscience, vol. 21, 2001, pp. 6957-6966.
Kurtz, R., Warzecha, A.-K., Egelhaaf, M.: Transfer of visual motion information via graded synapses operates linearly in the natural activity range. The journal of neuroscience. 21, 6957-6966 (2001).
Kurtz, Rafael, Warzecha, Anne-Kathrin, and Egelhaaf, Martin. “Transfer of visual motion information via graded synapses operates linearly in the natural activity range”. The journal of neuroscience 21.17 (2001): 6957-6966.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
931521c3f2de11857a2dc37e2fd0eaf8


27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sensory processing by motoneurons: a numerical model for low-level flight control in flies.
Bartussek J, Lehmann FO., J R Soc Interface 15(145), 2018
PMID: 30158188
Noise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster.
Suzuki Y, Ikeda H, Miyamoto T, Miyakawa H, Seki Y, Aonishi T, Morimoto T., Sci Rep 5(), 2015
PMID: 25974721
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu Rev Neurosci 33(), 2010
PMID: 20225934
Sensor fusion in identified visual interneurons.
Parsons MM, Krapp HG, Laughlin SB., Curr Biol 20(7), 2010
PMID: 20303270
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(5), 2007
PMID: 17333206
Application of multiline two-photon microscopy to functional in vivo imaging.
Kurtz R, Fricke M, Kalb J, Tinnefeld P, Sauer M., J Neurosci Methods 151(2), 2006
PMID: 16442636
Synaptic transmission at retinal ribbon synapses.
Heidelberger R, Thoreson WB, Witkovsky P., Prog Retin Eye Res 24(6), 2005
PMID: 16027025
Global versus local adaptation in fly motion-sensitive neurons.
Neri P, Laughlin SB., Proc Biol Sci 272(1578), 2005
PMID: 16191636
In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
Kalb J, Nielsen T, Fricke M, Egelhaaf M, Kurtz R., Biochem Biophys Res Commun 316(2), 2004
PMID: 15020223
Ca2+ imaging in the mammalian brain in vivo.
Helmchen F, Waters J., Eur J Pharmacol 447(2-3), 2002
PMID: 12151004
Vision in flying insects.
Egelhaaf M, Kern R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490262
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11517283
PubMed | Europe PMC

Suchen in

Google Scholar