Speed tuning in elementary motion detectors of the correlation type

Zanker JM, Srinivasan MV, Egelhaaf M (1999)
Biological cybernetics 80(2): 109-116.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Zanker, Johannes M.; Srinivasan, Mandyam V.; Egelhaaf, MartinUniBi
Abstract / Bemerkung
A prominent model of visual motion detection is the so-called correlation or Reichardt detector. Whereas this model can account for many properties of motion vision, from humans to insects (review, Borst and Egelhaaf 1989), it has been commonly assumed that this scheme of motion detection is not well suited to the measurement of image velocity. This is because the commonly used version of the model, which incorporates two unidirectional motion detectors with opposite preferred directions, produces a response which varies not only with the velocity of the image, but also with its spatial structure and contrast. On the other hand, information on image velocity can be crucial in various contexts, and a number of recent behavioural experiments suggest that insects do extract velocity for navigational purposes (review, Srinivasan et al. 1996). Here we show that other versions of the correlation model, which consists of a single unidirectional motion detector or incorporates two oppositely directed detectors with unequal sensitivities, produce responses which vary with image speed and display tuning curves that are substantially independent of the spatial structure of the image. This surprising feature suggests simple strategies of reducing ambiguities in the estimation of speed by using components of neural hardware that are already known to exist in the visual system.
Biological cybernetics
Page URI


Zanker JM, Srinivasan MV, Egelhaaf M. Speed tuning in elementary motion detectors of the correlation type. Biological cybernetics. 1999;80(2):109-116.
Zanker, J. M., Srinivasan, M. V., & Egelhaaf, M. (1999). Speed tuning in elementary motion detectors of the correlation type. Biological cybernetics, 80(2), 109-116. https://doi.org/10.1007/s004220050509
Zanker, J. M., Srinivasan, M. V., and Egelhaaf, M. (1999). Speed tuning in elementary motion detectors of the correlation type. Biological cybernetics 80, 109-116.
Zanker, J.M., Srinivasan, M.V., & Egelhaaf, M., 1999. Speed tuning in elementary motion detectors of the correlation type. Biological cybernetics, 80(2), p 109-116.
J.M. Zanker, M.V. Srinivasan, and M. Egelhaaf, “Speed tuning in elementary motion detectors of the correlation type”, Biological cybernetics, vol. 80, 1999, pp. 109-116.
Zanker, J.M., Srinivasan, M.V., Egelhaaf, M.: Speed tuning in elementary motion detectors of the correlation type. Biological cybernetics. 80, 109-116 (1999).
Zanker, Johannes M., Srinivasan, Mandyam V., and Egelhaaf, Martin. “Speed tuning in elementary motion detectors of the correlation type”. Biological cybernetics 80.2 (1999): 109-116.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila.
Strother JA, Wu ST, Wong AM, Nern A, Rogers EM, Le JQ, Rubin GM, Reiser MB., Neuron 94(1), 2017
PMID: 28384470
A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee.
Cope AJ, Sabo C, Gurney K, Vasilaki E, Marshall JA., PLoS Comput Biol 12(5), 2016
PMID: 27148968
Connectome of the fly visual circuitry.
Takemura SY., Microscopy (Oxf) 64(1), 2015
PMID: 25525121
Orientation Selectivity Sharpens Motion Detection in Drosophila.
Fisher YE, Silies M, Clandinin TR., Neuron 88(2), 2015
PMID: 26456048
GABAergic lateral interactions tune the early stages of visual processing in Drosophila.
Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR., Neuron 78(6), 2013
PMID: 23791198
Variation in the local motion statistics of real-life optic flow scenes.
Durant S, Zanker JM., Neural Comput 24(7), 2012
PMID: 22428592
Insect-inspired high-speed motion vision system for robot control.
Wu H, Zou K, Zhang T, Borst A, Kühnlenz K., Biol Cybern 106(8-9), 2012
PMID: 22864467
Large-scale automated histology in the pursuit of connectomes.
Kleinfeld D, Bharioke A, Blinder P, Bock DD, Briggman KL, Chklovskii DB, Denk W, Helmstaedter M, Kaufhold JP, Lee WC, Meyer HS, Micheva KD, Oberlaender M, Prohaska S, Reid RC, Smith SJ, Takemura S, Tsai PS, Sakmann B., J Neurosci 31(45), 2011
PMID: 22072665
Frequency response of lift control in Drosophila.
Graetzel CF, Nelson BJ, Fry SN., J R Soc Interface 7(52), 2010
PMID: 20462877
A model of visual detection of angular speed for bees.
Riabinina O, Philippides AO., J Theor Biol 257(1), 2009
PMID: 19056398
Intraocular injection of muscimol induces illusory motion reversal in goldfish.
Lee SY, Jung CS., Korean J Physiol Pharmacol 13(6), 2009
PMID: 20054494
Diverse speed response properties of motion sensitive neurons in the fly's optic lobe.
Douglass JK, Strausfeld NJ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(2), 2007
PMID: 17106704
Quantitative reassessment of speed tuning in the accessory optic system and pretectum of pigeons.
Winship IR, Crowder NA, Wylie DR., J Neurophysiol 95(1), 2006
PMID: 16192326
Neuronal algorithms that detect the temporal order of events.
de Polavieja GG., Neural Comput 18(9), 2006
PMID: 16846388
Illusory motion reversal in tune with motion detectors.
Holcombe AO, Clifford CW, Eagleman DM, Pakarian P., Trends Cogn Sci 9(12), 2005
PMID: 16271506
Multiplication and stimulus invariance in a looming-sensitive neuron.
Gabbiani F, Krapp HG, Hatsopoulos N, Mo CH, Koch C, Laurent G., J Physiol Paris 98(1-3), 2004
PMID: 15477020
Temporal frequency and velocity-like tuning in the pigeon accessory optic system.
Crowder NA, Dawson MR, Wylie DR., J Neurophysiol 90(3), 2003
PMID: 12750415
Multiplicative computation in a visual neuron sensitive to looming.
Gabbiani F, Krapp HG, Koch C, Laurent G., Nature 420(6913), 2002
PMID: 12447440
Fundamental mechanisms of visual motion detection: models, cells and functions.
Clifford CW, Ibbotson MR., Prog Neurobiol 68(6), 2002
PMID: 12576294
Characterising temporal delay filters in biological motion detectors.
Ibbotson MR, Clifford CW., Vision Res 41(18), 2001
PMID: 11459589
Motion detection in insect orientation and navigation.
Srinivasan MV, Poteser M, Kral K., Vision Res 39(16), 1999
PMID: 10492835


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 12440388
PubMed | Europe PMC

Suchen in

Google Scholar