Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly

Warzecha A-K, Kurtz R, Egelhaaf M (2003)
Neuroscience 119(4): 1103-1112.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Synaptic transmission is usually studied in vitro with electrical stimulation replacing the natural input of the system. In contrast, we analyzed in vivo transfer of visual motion information from graded-potential presynaptic to spiking postsynaptic neurons in the fly. Motion in the null direction leads to hyperpolarization of the presynaptic neuron but does not much influence the postsynaptic cell, because its firing rate is already low during rest, giving only little scope for further reductions. In contrast, preferred-direction motion leads to presynaptic depolarizations and increases the postsynaptic spike rate. Signal transfer to the postsynaptic cell is linear and reliable for presynaptic graded membrane potential fluctuations of up to approximately 10 Hz. This frequency range covers the dynamic range of velocities that is encoded with a high gain by visual motion-sensitive neurons. Hence, information about preferred-direction motion is transmitted largely undistorted ensuring a consistent dependency of neuronal signals on stimulus parameters, such as motion velocity. Postsynaptic spikes are often elicited by rapid presynaptic spike-like depolarizations which superimpose the graded membrane potential. Although the timing of most of these spike-like depolarizations is set by noise and not by the motion stimulus, it is preserved at the synapse with millisecond precision. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.
Stichworte
Synapse; Neural computation; Graded potentials; Reliability; Visual motion; Spike timing
Erscheinungsjahr
2003
Zeitschriftentitel
Neuroscience
Band
119
Ausgabe
4
Seite(n)
1103-1112
ISSN
0306-4522
Page URI
https://pub.uni-bielefeld.de/record/1773453

Zitieren

Warzecha A-K, Kurtz R, Egelhaaf M. Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience. 2003;119(4):1103-1112.
Warzecha, A. - K., Kurtz, R., & Egelhaaf, M. (2003). Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience, 119(4), 1103-1112. doi:10.1016/S0306-4522(03)00204-5
Warzecha, A. - K., Kurtz, R., and Egelhaaf, M. (2003). Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience 119, 1103-1112.
Warzecha, A.-K., Kurtz, R., & Egelhaaf, M., 2003. Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience, 119(4), p 1103-1112.
A.-K. Warzecha, R. Kurtz, and M. Egelhaaf, “Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly”, Neuroscience, vol. 119, 2003, pp. 1103-1112.
Warzecha, A.-K., Kurtz, R., Egelhaaf, M.: Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience. 119, 1103-1112 (2003).
Warzecha, Anne-Kathrin, Kurtz, Rafael, and Egelhaaf, Martin. “Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly”. Neuroscience 119.4 (2003): 1103-1112.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
b101a5aaf984966d24975f87f3053b79

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12831867
PubMed | Europe PMC

Suchen in

Google Scholar