Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly

Warzecha A-K, Kurtz R, Egelhaaf M (2003)
Neuroscience 119(4): 1103-1112.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Synaptic transmission is usually studied in vitro with electrical stimulation replacing the natural input of the system. In contrast, we analyzed in vivo transfer of visual motion information from graded-potential presynaptic to spiking postsynaptic neurons in the fly. Motion in the null direction leads to hyperpolarization of the presynaptic neuron but does not much influence the postsynaptic cell, because its firing rate is already low during rest, giving only little scope for further reductions. In contrast, preferred-direction motion leads to presynaptic depolarizations and increases the postsynaptic spike rate. Signal transfer to the postsynaptic cell is linear and reliable for presynaptic graded membrane potential fluctuations of up to approximately 10 Hz. This frequency range covers the dynamic range of velocities that is encoded with a high gain by visual motion-sensitive neurons. Hence, information about preferred-direction motion is transmitted largely undistorted ensuring a consistent dependency of neuronal signals on stimulus parameters, such as motion velocity. Postsynaptic spikes are often elicited by rapid presynaptic spike-like depolarizations which superimpose the graded membrane potential. Although the timing of most of these spike-like depolarizations is set by noise and not by the motion stimulus, it is preserved at the synapse with millisecond precision. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.
Synapse; Neural computation; Graded potentials; Reliability; Visual motion; Spike timing
Page URI


Warzecha A-K, Kurtz R, Egelhaaf M. Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience. 2003;119(4):1103-1112.
Warzecha, A. - K., Kurtz, R., & Egelhaaf, M. (2003). Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience, 119(4), 1103-1112.
Warzecha, Anne-Kathrin, Kurtz, Rafael, and Egelhaaf, Martin. 2003. “Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly”. Neuroscience 119 (4): 1103-1112.
Warzecha, A. - K., Kurtz, R., and Egelhaaf, M. (2003). Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience 119, 1103-1112.
Warzecha, A.-K., Kurtz, R., & Egelhaaf, M., 2003. Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience, 119(4), p 1103-1112.
A.-K. Warzecha, R. Kurtz, and M. Egelhaaf, “Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly”, Neuroscience, vol. 119, 2003, pp. 1103-1112.
Warzecha, A.-K., Kurtz, R., Egelhaaf, M.: Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly. Neuroscience. 119, 1103-1112 (2003).
Warzecha, Anne-Kathrin, Kurtz, Rafael, and Egelhaaf, Martin. “Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly”. Neuroscience 119.4 (2003): 1103-1112.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Peptide neuromodulation of synaptic dynamics in an oscillatory network.
Zhao S, Sheibanie AF, Oh M, Rabbah P, Nadim F., J Neurosci 31(39), 2011
PMID: 21957260
Motion adaptation and the velocity coding of natural scenes.
Barnett PD, Nordström K, O'Carroll DC., Curr Biol 20(11), 2010
PMID: 20537540
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M., Eur J Neurosci 30(4), 2009
PMID: 19674090
Fly vision: neural mechanisms of motion computation.
Egelhaaf M., Curr Biol 18(8), 2008
PMID: 18430633
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol 3(6), 2005
PMID: 15884977
In vivo two-photon laser-scanning microscopy of Ca2+ dynamics in visual motion-sensitive neurons.
Kalb J, Nielsen T, Fricke M, Egelhaaf M, Kurtz R., Biochem Biophys Res Commun 316(2), 2004
PMID: 15020223
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938

58 References

Daten bereitgestellt von Europe PubMed Central.

Calcium currents and graded synaptic transmission between heart interneurons of the leech
Angstadt, J Neurosci 11(), 1993
How does calcium trigger neurotransmitter release?
Augustine GJ., Curr. Opin. Neurobiol. 11(3), 2001
PMID: 11399430
Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Information theory and neural coding.
Borst A, Theunissen FE., Nat. Neurosci. 2(11), 1999
PMID: 10526332


Dayan, 2001
Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences
de, Proc R Soc Lond B 234(), 1988
Reliability and statistical efficiency of a blowfly movement-sensitive neuron
de, Phil Trans R Soc Lond B 348(), 1995
Real-time encoding of motion
de, 2001
The rate of information transfer at graded-potential synapses
de, Nature 379(), 1996
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Dynamic response properties of movement detectors
Egelhaaf, Biol Cybern 56(), 1987

Faber, 1998
Short-term synaptic plasticity as a temporal filter.
Fortune ES, Rose GJ., Trends Neurosci. 24(7), 2001
PMID: 11410267
Principles of spike train analysis
Gabbiani, 1998
Presynaptic dendrites
Graubard, 1979
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen, Verh Dtsch Zool Ges 74(), 1981
Motion sensitive interneurons in the optomotor system of the fly
Hausen, Biol Cybern 45(), 1982
Neural mechanisms of visual course control in insects
Hausen, 1989
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora
Hengstenberg, J Comp Physiol 149(), 1982
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Olfactory reciprocal synapses: dendritic signaling in the CNS.
Isaacson JS, Strowbridge BW., Neuron 20(4), 1998
PMID: 9581766

Johnston, 1995
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Input-output relation of a single synapse.
Katz B, Miledi R., Nature 212(5067), 1966
PMID: 21090453
A calcium-dependent feedback mechanism participates in shaping single NMDA miniature EPSCs.
Umemiya M, Chen N, Raymond LA, Murphy TH., J. Neurosci. 21(1), 2001
PMID: 11150313
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Synaptic limitations to contrast coding in the retina of the blowfly Calliphora.
Laughlin SB, Howard J, Blakeslee B., Proc. R. Soc. Lond., B, Biol. Sci. 231(1265), 1987
PMID: 2892202
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Functional role of Ca2+ currents in graded and spike-mediated synaptic transmission between leech heart interneurons.
Lu J, Dalton JF 4th, Stokes DR, Calabrese RL., J. Neurophysiol. 77(4), 1997
PMID: 9114236
Representation of acoustic communication signals by insect auditory receptor neurons.
Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV., J. Neurosci. 21(9), 2001
PMID: 11312306
Reliability of spike timing in neocortical neurons.
Mainen ZF, Sejnowski TJ., Science 268(5216), 1995
PMID: 7770778
Temporal dynamics of graded synaptic transmission in the lobster stomatogastric ganglion.
Manor Y, Nadim F, Abbott LF, Marder E., J. Neurosci. 17(14), 1997
PMID: 9204942

Marmarelis, 1978
Influence of low and high frequency inputs on spike timing in visual cortical neurons.
Nowak LG, Sanchez-Vives MV, McCormick DA., Cereb. Cortex 7(6), 1997
PMID: 9276174
Assessing the performance of neural encoding models in the presence of noise.
Roddey JC, Girish B, Miller JP., J Comput Neurosci 8(2), 2000
PMID: 10798596
Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways.
Strausfeld NJ, Kong A, Milde JJ, Gilbert C, Ramaiah L., J. Comp. Neurol. 361(2), 1995
PMID: 8543664
Facilitation, augmentation and potentiation at central synapses.
Thomson AM., Trends Neurosci. 23(7), 2000
PMID: 10856940
Synaptic mechanisms for coding timing in auditory neurons
Trussell, Annu Rev Neurosci 61(), 1999
Variability in spike trains during constant and dynamic stimulation.
Warzecha AK, Egelhaaf M., Science 283(5409), 1999
PMID: 10082467
Neuronal encoding of visual motion in real-time
Warzecha, 2001
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 12831867
PubMed | Europe PMC

Suchen in

Google Scholar