Binocular contributions to optic flow processing in the fly visual system

Krapp HG, Hengstenberg R, Egelhaaf M (2001)
Journal of neurophysiology 85(2): 724-734.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Krapp, Holger G.; Hengstenberg, Roland; Egelhaaf, MartinUniBi
Abstract / Bemerkung
Integrating binocular motion information tunes wide-field direction-selective neurons in the fly optic lobe to respond preferentially to specific optic flow fields. This is shown by measuring the local preferred directions (LPDs) and local motion sensitivities (LMSs) at many positions within the receptive fields of three types of anatomically identifiable lobula plate tangential neurons: the three horizontal system (HS) neurons, the two centrifugal horizontal (CH) neurons, and three heterolateral connecting elements. The latter impart to two of the HS and to both CH neurons a sensitivity to motion from the contralateral visual field. Thus in two HS neurons and both CH neurons, the response field comprises part of the ipsi- and contralateral visual hemispheres. The distributions of LPDs within the binocular response fields of each neuron show marked similarities to the optic flow fields created by particular types of self-movements of the fly. Based on the characteristic distributions of local preferred directions and motion sensitivities within the response fields, the functional role of the respective neurons in the context of behaviorally relevant processing of visual wide-field motion is discussed.
Erscheinungsjahr
2001
Zeitschriftentitel
Journal of neurophysiology
Band
85
Ausgabe
2
Seite(n)
724-734
ISSN
0363-6135
Page URI
https://pub.uni-bielefeld.de/record/1773446

Zitieren

Krapp HG, Hengstenberg R, Egelhaaf M. Binocular contributions to optic flow processing in the fly visual system. Journal of neurophysiology. 2001;85(2):724-734.
Krapp, H. G., Hengstenberg, R., & Egelhaaf, M. (2001). Binocular contributions to optic flow processing in the fly visual system. Journal of neurophysiology, 85(2), 724-734.
Krapp, Holger G., Hengstenberg, Roland, and Egelhaaf, Martin. 2001. “Binocular contributions to optic flow processing in the fly visual system”. Journal of neurophysiology 85 (2): 724-734.
Krapp, H. G., Hengstenberg, R., and Egelhaaf, M. (2001). Binocular contributions to optic flow processing in the fly visual system. Journal of neurophysiology 85, 724-734.
Krapp, H.G., Hengstenberg, R., & Egelhaaf, M., 2001. Binocular contributions to optic flow processing in the fly visual system. Journal of neurophysiology, 85(2), p 724-734.
H.G. Krapp, R. Hengstenberg, and M. Egelhaaf, “Binocular contributions to optic flow processing in the fly visual system”, Journal of neurophysiology, vol. 85, 2001, pp. 724-734.
Krapp, H.G., Hengstenberg, R., Egelhaaf, M.: Binocular contributions to optic flow processing in the fly visual system. Journal of neurophysiology. 85, 724-734 (2001).
Krapp, Holger G., Hengstenberg, Roland, and Egelhaaf, Martin. “Binocular contributions to optic flow processing in the fly visual system”. Journal of neurophysiology 85.2 (2001): 724-734.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
d76a93199ba40037cc02763ab22773b2


66 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A crustacean lobula plate: Morphology, connections, and retinotopic organization.
Bengochea M, Berón de Astrada M, Tomsic D, Sztarker J., J Comp Neurol 526(1), 2018
PMID: 28884472
Binocular Neuronal Processing of Object Motion in an Arthropod.
Scarano F, Sztarker J, Medan V, Berón de Astrada M, Tomsic D., J Neurosci 38(31), 2018
PMID: 30012687
Parameters of motion vision in low light in the hawkmoth Manduca sexta.
Parthasarathy K, Willis MA., J Exp Biol 221(pt 20), 2018
PMID: 29997159
The independence of eye movements in a stomatopod crustacean is task dependent.
Daly IM, How MJ, Partridge JC, Roberts NW., J Exp Biol 220(pt 7), 2017
PMID: 28356369
Sensation during Active Behaviors.
Busse L, Cardin JA, Chiappe ME, Halassa MM, McGinley MJ, Yamashita T, Saleem AB., J Neurosci 37(45), 2017
PMID: 29118211
An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila.
Suver MP, Huda A, Iwasaki N, Safarik S, Dickinson MH., J Neurosci 36(46), 2016
PMID: 27852783
Encoding of yaw in the presence of distractor motion: studies in a fly motion sensitive neuron.
Roy S, Sinha SR, de Ruyter van Steveninck R., J Neurosci 35(16), 2015
PMID: 25904799
Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons.
Lee YJ, Jönsson HO, Nordström K., PLoS One 10(5), 2015
PMID: 25955416
Noise-robust recognition of wide-field motion direction and the underlying neural mechanisms in Drosophila melanogaster.
Suzuki Y, Ikeda H, Miyamoto T, Miyakawa H, Seki Y, Aonishi T, Morimoto T., Sci Rep 5(), 2015
PMID: 25974721
Figure-ground discrimination behavior in Drosophila. I. Spatial organization of wing-steering responses.
Fox JL, Aptekar JW, Zolotova NM, Shoemaker PA, Frye MA., J Exp Biol 217(pt 4), 2014
PMID: 24198267
Cooperative integration and representation underlying bilateral network of fly motion-sensitive neurons.
Suzuki Y, Morimoto T, Miyakawa H, Aonishi T., PLoS One 9(1), 2014
PMID: 24465711
Dendritic end inhibition in large-field visual neurons of the fly.
Elyada YM, Haag J, Borst A., J Neurosci 33(8), 2013
PMID: 23426692
Closed-loop response properties of a visual interneuron involved in fly optomotor control.
Ejaz N, Krapp HG, Tanaka RJ., Front Neural Circuits 7(), 2013
PMID: 23543872
Enhanced optomotor efficiency by expression of the human gene superoxide dismutase primarily in Drosophila motorneurons.
Petrosyan A, Gonçalves OF, Hsieh IH, Phillips JP, Saberi K., J Neurogenet 27(1-2), 2013
PMID: 23597337
Contributions of the 12 neuron classes in the fly lamina to motion vision.
Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB., Neuron 79(1), 2013
PMID: 23849200
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Binocular interactions underlying the classic optomotor responses of flying flies.
Duistermars BJ, Care RA, Frye MA., Front Behav Neurosci 6(), 2012
PMID: 22375108
Higher-order motion sensitivity in fly visual circuits.
Lee YJ, Nordström K., Proc Natl Acad Sci U S A 109(22), 2012
PMID: 22586123
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
An olfactory circuit increases the fidelity of visual behavior.
Chow DM, Theobald JC, Frye MA., J Neurosci 31(42), 2011
PMID: 22016537
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol 8(), 2010
PMID: 20384983
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr Biol 20(16), 2010
PMID: 20655222
Spatiotemporal response properties of optic-flow processing neurons.
Weber F, Machens CK, Borst A., Neuron 67(4), 2010
PMID: 20797539
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc Biol Sci 276(1673), 2009
PMID: 19656791
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Möller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Dye-coupling visualizes networks of large-field motion-sensitive neurons in the fly.
Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(5), 2005
PMID: 15776269
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol 3(6), 2005
PMID: 15884977
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12), 2005
PMID: 16133502
Insect-inspired estimation of egomotion.
Franz MO, Chahl JS, Krapp HG., Neural Comput 16(11), 2004
PMID: 15476600
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res 43(7), 2003
PMID: 12639604
Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions.
Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(5), 2003
PMID: 12720032
Biology and pathology of the invertebrate eye.
Williams DL., Vet Clin North Am Exot Anim Pract 5(2), 2002
PMID: 12170641
Vision in flying insects.
Egelhaaf M, Kern R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490262
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534

37 References

Daten bereitgestellt von Europe PubMed Central.

Principles of visual motion detection.
Borst A, Egelhaaf M., Trends Neurosci. 12(8), 1989
PMID: 2475948

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Synapse distribution on VCH, an inhibitory, motion-sensitive interneuron in the fly visual system.
Gauck V, Egelhaaf M, Borst A., J. Comp. Neurol. 381(4), 1997
PMID: 9136805

Hausen, Z Naturforsch 31(), 1976

Hausen, Verh Dtsch Zool Ges 74(), 1981

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100

AUTHOR UNKNOWN, 0
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
Perception of self-motion from visual flow.
Lappe M, Bremmer F, van den Berg AV ., Trends Cogn. Sci. (Regul. Ed.) 3(9), 1999
PMID: 10461195

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11160507
PubMed | Europe PMC

Suchen in

Google Scholar