Neuronal processing of behaviourally generated optic flow: experiments and model simulations

Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M (2001)
Network: computation in neural systems 12(3): 351-369.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Kern, RolandUniBi ; Lutterklas, Maik; Petereit, Christian; Lindemann, Jens PeterUniBi ; Egelhaaf, MartinUniBi
Abstract / Bemerkung
The stimuli traditionally used for analysing visual information processing are much simpler than what an animal sees when moving in its natural environment. Therefore, we analysed in a previous study the performance of an identified neuron in the optomotor system of the fly by using as visual stimuli image sequences that were experienced by the animal while walking in a structured environment. These electrophysiological experiments revealed that the fly visual system computes from behaviourally generated optic flow a rather unambiguous representation of the animal's self-motion. In contrast to conclusions based on simple stimuli, the directions of turns are represented by an interneuron, the HSE cell, quite independent of the spatial layout of the environment and its textural properties when the cell is stimulated with behaviourally generated optic flow. This conclusion is substantiated here by further experimental evidence. Moreover, it is shown that the largely unambiguous responses of the HSE cell to behaviourally generated optic flow can be replicated to a large extent by a network model of the fly's visual motion pathway. These results stress the significance of naturalistic stimuli for analysing what is encoded by neuronal circuits under natural operating conditions.
Erscheinungsjahr
2001
Zeitschriftentitel
Network: computation in neural systems
Band
12
Ausgabe
3
Seite(n)
351-369
ISSN
0954-898X
eISSN
1361-6536
Page URI
https://pub.uni-bielefeld.de/record/1773431

Zitieren

Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M. Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: computation in neural systems. 2001;12(3):351-369.
Kern, R., Lutterklas, M., Petereit, C., Lindemann, J. P., & Egelhaaf, M. (2001). Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: computation in neural systems, 12(3), 351-369. https://doi.org/10.1088/0954-898X/12/3/307
Kern, Roland, Lutterklas, Maik, Petereit, Christian, Lindemann, Jens Peter, and Egelhaaf, Martin. 2001. “Neuronal processing of behaviourally generated optic flow: experiments and model simulations”. Network: computation in neural systems 12 (3): 351-369.
Kern, R., Lutterklas, M., Petereit, C., Lindemann, J. P., and Egelhaaf, M. (2001). Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: computation in neural systems 12, 351-369.
Kern, R., et al., 2001. Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: computation in neural systems, 12(3), p 351-369.
R. Kern, et al., “Neuronal processing of behaviourally generated optic flow: experiments and model simulations”, Network: computation in neural systems, vol. 12, 2001, pp. 351-369.
Kern, R., Lutterklas, M., Petereit, C., Lindemann, J.P., Egelhaaf, M.: Neuronal processing of behaviourally generated optic flow: experiments and model simulations. Network: computation in neural systems. 12, 351-369 (2001).
Kern, Roland, Lutterklas, Maik, Petereit, Christian, Lindemann, Jens Peter, and Egelhaaf, Martin. “Neuronal processing of behaviourally generated optic flow: experiments and model simulations”. Network: computation in neural systems 12.3 (2001): 351-369.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
e9d5dbb9e4fe63d0c09da977f76bb1ef


12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Möller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
The optokinetic response in wild type and white zebra finches.
Eckmeier D, Bischof HJ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(10), 2008
PMID: 18704442
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol 3(6), 2005
PMID: 15884977
Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths.
Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(12), 2005
PMID: 16133502
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res 43(7), 2003
PMID: 12639604
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938
Vision in flying insects.
Egelhaaf M, Kern R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490262

55 References

Daten bereitgestellt von Europe PubMed Central.


Baker, Vis. (4), 1990
Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199

AUTHOR UNKNOWN, 0
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164

C, Soc. Neurosci. Abstr. 1(), 2000

H, 1997

Dethier, 1976
Accuracy of velocity estimation by Reichardt correlators.
Dror RO, O'Carroll DC, Laughlin SB., J Opt Soc Am A Opt Image Sci Vis 18(2), 2001
PMID: 11205969

AUTHOR UNKNOWN, 0

Egelhaaf, 1993

Egelhaaf, Vision Res. 11(), 2001

AUTHOR UNKNOWN, 0
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158

Gibson, 1979
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Heide, BIONA Report (), 1983

Heisenberg, A 163(), 1988
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Optomotor course control in flies with largely asymmetric visual input.
Kern R, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659042
Neural processing of naturalistic optic flow.
Kern R, Petereit C, Egelhaaf M., J. Neurosci. 21(8), 2001
PMID: 11306645
Simulated optic flow and extrastriate cortex. I. Optic flow versus texture.
Kim JN, Mulligan K, Sherk H., J. Neurophysiol. 77(2), 1997
PMID: 9065828
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209

K, Soc. Neurosci. Abstr. 26(), 2000

AUTHOR UNKNOWN, 0
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Maddess, B 225(), 1985

F, 1993
Simulated optic flow and extrastriate cortex. II. Responses to bar versus large-field stimuli.
Mulligan K, Kim JN, Sherk H., J. Neurophysiol. 77(2), 1997
PMID: 9065829
Deciphering a neural code for vision.
Passaglia C, Dodge F, Herzog E, Jackson S, Barlow R., Proc. Natl. Acad. Sci. U.S.A. 94(23), 1997
PMID: 9356504

Pekel, Neuro Rep. 7(), 1996
Spatial frequency selectivity of periodic complex cells in the visual cortex of the cat.
Pollen DA, Andrews BW, Feldon SE., Vision Res. 18(6), 1978
PMID: 664354

AUTHOR UNKNOWN, 0
Modelling the power spectra of natural images: statistics and information.
van der Schaaf A, van Hateren JH., Vision Res. 36(17), 1996
PMID: 8917763

C, 1949
Dendritic computation of direction selectivity and gain control in visual interneurons.
Single S, Haag J, Borst A., J. Neurosci. 17(16), 1997
PMID: 9236213

AUTHOR UNKNOWN, 0
Motion detection in insect orientation and navigation.
Srinivasan MV, Poteser M, Kral K., Vision Res. 39(16), 1999
PMID: 10492835

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Wolf-Oberhollenzer, Temporal frequency dependence in motion-sensitive neurons of the accessory optic system of the pigeon Naturwissenschaften 77(), 1990
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11563534
PubMed | Europe PMC

Suchen in

Google Scholar