Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly

Karmeier K, Krapp HG, Egelhaaf M (2005)
Journal of neurophysiology 94(3): 2182-2194.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor/in
; ;
Abstract / Bemerkung
Coding of sensory information often involves the activity of neuronal populations. We demonstrate how the accuracy of a population code depends on integration time, the size of the population, and noise correlation between the participating neurons. The population we study consists of 10 identified visual interneurons in the blowfly Calliphora vicina involved in optic flow processing. These neurons are assumed to encode the animal's head or body rotations around horizontal axes by means of graded potential changes. From electrophysiological experiments we obtain parameters for modeling the neurons' responses. From applying a Bayesian analysis on the modeled population response we draw three major conclusions. First, integration of neuronal activities over a time period of only 5 ms after response onset is sufficient to decode accurately the rotation axis. Second, noise correlation between neurons has only little impact on the population's performance. And third, although a population of only two neurons would be sufficient to encode any horizontal rotation axis, the population of 10 vertical system neurons is advantageous if the available integration time is short. For the fly, short integration times to decode neuronal responses are important when controlling rapid flight maneuvers.
Erscheinungsjahr
2005
Zeitschriftentitel
Journal of neurophysiology
Band
94
Ausgabe
3
Seite(n)
2182-2194
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1773425

Zitieren

Karmeier K, Krapp HG, Egelhaaf M. Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology. 2005;94(3):2182-2194.
Karmeier, K., Krapp, H. G., & Egelhaaf, M. (2005). Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology, 94(3), 2182-2194. doi:10.1152/jn.00278.2005
Karmeier, K., Krapp, H. G., and Egelhaaf, M. (2005). Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology 94, 2182-2194.
Karmeier, K., Krapp, H.G., & Egelhaaf, M., 2005. Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology, 94(3), p 2182-2194.
K. Karmeier, H.G. Krapp, and M. Egelhaaf, “Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly”, Journal of neurophysiology, vol. 94, 2005, pp. 2182-2194.
Karmeier, K., Krapp, H.G., Egelhaaf, M.: Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology. 94, 2182-2194 (2005).
Karmeier, Katja, Krapp, Holger G., and Egelhaaf, Martin. “Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly”. Journal of neurophysiology 94.3 (2005): 2182-2194.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
3ca4b10e37ae69179a9db389f8f9c021

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15901759
PubMed | Europe PMC

Suchen in

Google Scholar