Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly

Karmeier K, Krapp HG, Egelhaaf M (2005)
Journal of neurophysiology 94(3): 2182-2194.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Karmeier, Katja; Krapp, Holger G.; Egelhaaf, MartinUniBi
Abstract / Bemerkung
Coding of sensory information often involves the activity of neuronal populations. We demonstrate how the accuracy of a population code depends on integration time, the size of the population, and noise correlation between the participating neurons. The population we study consists of 10 identified visual interneurons in the blowfly Calliphora vicina involved in optic flow processing. These neurons are assumed to encode the animal's head or body rotations around horizontal axes by means of graded potential changes. From electrophysiological experiments we obtain parameters for modeling the neurons' responses. From applying a Bayesian analysis on the modeled population response we draw three major conclusions. First, integration of neuronal activities over a time period of only 5 ms after response onset is sufficient to decode accurately the rotation axis. Second, noise correlation between neurons has only little impact on the population's performance. And third, although a population of only two neurons would be sufficient to encode any horizontal rotation axis, the population of 10 vertical system neurons is advantageous if the available integration time is short. For the fly, short integration times to decode neuronal responses are important when controlling rapid flight maneuvers.
Erscheinungsjahr
2005
Zeitschriftentitel
Journal of neurophysiology
Band
94
Ausgabe
3
Seite(n)
2182-2194
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1773425

Zitieren

Karmeier K, Krapp HG, Egelhaaf M. Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology. 2005;94(3):2182-2194.
Karmeier, K., Krapp, H. G., & Egelhaaf, M. (2005). Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology, 94(3), 2182-2194. https://doi.org/10.1152/jn.00278.2005
Karmeier, Katja, Krapp, Holger G., and Egelhaaf, Martin. 2005. “Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly”. Journal of neurophysiology 94 (3): 2182-2194.
Karmeier, K., Krapp, H. G., and Egelhaaf, M. (2005). Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology 94, 2182-2194.
Karmeier, K., Krapp, H.G., & Egelhaaf, M., 2005. Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology, 94(3), p 2182-2194.
K. Karmeier, H.G. Krapp, and M. Egelhaaf, “Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly”, Journal of neurophysiology, vol. 94, 2005, pp. 2182-2194.
Karmeier, K., Krapp, H.G., Egelhaaf, M.: Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly. Journal of neurophysiology. 94, 2182-2194 (2005).
Karmeier, Katja, Krapp, Holger G., and Egelhaaf, Martin. “Population coding of self-motion: applying Bayesian analysis to a population of visual interneurons in the fly”. Journal of neurophysiology 94.3 (2005): 2182-2194.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
3ca4b10e37ae69179a9db389f8f9c021


17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila.
Suver MP, Huda A, Iwasaki N, Safarik S, Dickinson MH., J Neurosci 36(46), 2016
PMID: 27852783
A network of visual motion-sensitive neurons for computing object position in an arthropod.
Medan V, Berón De Astrada M, Scarano F, Tomsic D., J Neurosci 35(17), 2015
PMID: 25926445
Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(5), 2014
PMID: 24647929
Near-optimal decoding of transient stimuli from coupled neuronal subpopulations.
Trousdale J, Carroll SR, Gabbiani F, Josić K., J Neurosci 34(36), 2014
PMID: 25186763
Neural representation of calling songs and their behavioral relevance in the grasshopper auditory system.
Meckenhäuser G, Krämer S, Farkhooi F, Ronacher B, Nawrot MP., Front Syst Neurosci 8(), 2014
PMID: 25565983
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Efficient Markov chain Monte Carlo methods for decoding neural spike trains.
Ahmadian Y, Pillow JW, Paninski L., Neural Comput 23(1), 2011
PMID: 20964539
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu Rev Neurosci 33(), 2010
PMID: 20225934
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Möller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc Natl Acad Sci U S A 104(24), 2007
PMID: 17551009
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623

73 References

Daten bereitgestellt von Europe PubMed Central.

The effect of correlated variability on the accuracy of a population code.
Abbott LF, Dayan P., Neural Comput 11(1), 1999
PMID: 9950724
Coding and transmission of information by neural ensembles.
Averbeck BB, Lee D., Trends Neurosci. 27(4), 2004
PMID: 15046882

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
MSTd neuronal basis functions for the population encoding of heading direction.
Ben Hamed S, Page W, Duffy C, Pouget A., J. Neurophysiol. 90(2), 2003
PMID: 12750416
The structure and precision of retinal spike trains.
Berry MJ, Warland DK, Meister M., Proc. Natl. Acad. Sci. U.S.A. 94(10), 1997
PMID: 9144251
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Functional sub-regions for optic flow processing in the posteromedial lateral suprasylvian cortex of the cat.
Brosseau-Lachaine O, Faubert J, Casanova C., Cereb. Cortex 11(10), 2001
PMID: 11549621

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Neuronal population coding of movement direction.
Georgopoulos AP, Schwartz AB, Kettner RE., Science 233(4771), 1986
PMID: 3749885

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Information flow and temporal coding in primate pattern vision.
Heller J, Hertz JA, Kjaer TW, Richmond BJ., J Comput Neurosci 2(3), 1995
PMID: 8521286
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J. Neurophysiol. 90(3), 2003
PMID: 12736239
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977

AUTHOR UNKNOWN, 0
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473

AUTHOR UNKNOWN, 0
Neural coding with graded membrane potential changes and spikes.
Kretzberg J, Warzecha AK, Egelhaaf M., J Comput Neurosci 11(2), 2001
PMID: 11717531

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Simultaneous encoding of tactile information by three primate cortical areas.
Nicolelis MA, Ghazanfar AA, Stambaugh CR, Oliveira LM, Laubach M, Chapin JK, Nelson RJ, Kaas JH., Nat. Neurosci. 1(7), 1998
PMID: 10196571
The 'Ideal Homunculus': decoding neural population signals.
Oram MW, Foldiak P, Perrett DI, Sengpiel F., Trends Neurosci. 21(6), 1998
PMID: 9641539

AUTHOR UNKNOWN, 0
Time course of information about motion direction in visual area MT of macaque monkeys.
Osborne LC, Bialek W, Lisberger SG., J. Neurosci. 24(13), 2004
PMID: 15056700
Heading representation in MST: sensory interactions and population encoding.
Page WK, Duffy CJ., J. Neurophysiol. 89(4), 2003
PMID: 12686576
Narrow versus wide tuning curves: What's best for a population code?
Pouget A, Deneve S, Ducom JC, Latham PE., Neural Comput 11(1), 1999
PMID: 9950723
Vector reconstruction from firing rates.
Salinas E, Abbott LF., J Comput Neurosci 1(1-2), 1994
PMID: 8792227

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Synchronous activity in the visual system.
Usrey WM, Reid RC., Annu. Rev. Physiol. 61(), 1999
PMID: 10099696
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Temporal precision of the encoding of motion information by visual interneurons.
Warzecha AK, Kretzberg J, Egelhaaf M., Curr. Biol. 8(7), 1998
PMID: 9545194
Representational accuracy of stochastic neural populations.
Wilke SD, Eurich CW., Neural Comput 14(1), 2002
PMID: 11747537

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Neuronal tuning: To sharpen or broaden?
Zhang K, Sejnowski TJ., Neural Comput 11(1), 1999
PMID: 9950722
Correlated neuronal discharge rate and its implications for psychophysical performance.
Zohary E, Shadlen MN, Newsome WT., Nature 370(6485), 1994
PMID: 8022482
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 15901759
PubMed | Europe PMC

Suchen in

Google Scholar