Robustness of the tuning of fly visual interneurons to rotatory optic flow

Karmeier K, Krapp HG, Egelhaaf M (2003)
Journal of neurophysiology 90(3): 1626-1634.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ;
Abstract / Bemerkung
The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Therefore we measured the responses of an identifiable neuron, the V1 tangential cell, to wide-field motion stimuli mimicking optic flow fields similar to those the fly encounters during particular self-motions. The stimuli were generated by a "planetarium-projector," casting a pattern of moving light dots on a large spherical projection screen. We determined the tuning curves of the V1-cell to optic flow fields as induced by the animal during 1) rotation about horizontally aligned body axes, 2) upward/downward translation, and 3) a combination of both components. We found that the V1-cell does not respond as specifically to self-rotations, as had been concluded from its receptive field organization. The neuron responds strongly to upward translation and its tuning to rotations is much coarser than expected. The discrepancies between the responses to global optic flow and the predictions based on the receptive field organization are likely due to nonlinear integration properties of tangential neurons. Response parameters like orientation, shape, and width of the tuning curve are largely unaffected by changes in rotation velocity or a superposition of rotational and translational optic flow.
Erscheinungsjahr
Zeitschriftentitel
Journal of neurophysiology
Band
90
Ausgabe
3
Seite(n)
1626-1634
ISSN
eISSN
PUB-ID

Zitieren

Karmeier K, Krapp HG, Egelhaaf M. Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology. 2003;90(3):1626-1634.
Karmeier, K., Krapp, H. G., & Egelhaaf, M. (2003). Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology, 90(3), 1626-1634. doi:10.1152/jn.00234.2003
Karmeier, K., Krapp, H. G., and Egelhaaf, M. (2003). Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology 90, 1626-1634.
Karmeier, K., Krapp, H.G., & Egelhaaf, M., 2003. Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology, 90(3), p 1626-1634.
K. Karmeier, H.G. Krapp, and M. Egelhaaf, “Robustness of the tuning of fly visual interneurons to rotatory optic flow”, Journal of neurophysiology, vol. 90, 2003, pp. 1626-1634.
Karmeier, K., Krapp, H.G., Egelhaaf, M.: Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology. 90, 1626-1634 (2003).
Karmeier, Katja, Krapp, Holger G., and Egelhaaf, Martin. “Robustness of the tuning of fly visual interneurons to rotatory optic flow”. Journal of neurophysiology 90.3 (2003): 1626-1634.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-09-23T11:10:24Z

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Shyy W, Kang CK, Chirarattananon P, Ravi S, Liu H., Proc Math Phys Eng Sci 472(2186), 2016
PMID: 27118897
An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila.
Suver MP, Huda A, Iwasaki N, Safarik S, Dickinson MH., J Neurosci 36(46), 2016
PMID: 27852783
Integration of binocular optic flow in cervical neck motor neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22674287
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc Natl Acad Sci U S A 104(24), 2007
PMID: 17551009
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623

51 References

Daten bereitgestellt von Europe PubMed Central.

Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462

AUTHOR UNKNOWN, 0
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651

AUTHOR UNKNOWN, 0
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562

AUTHOR UNKNOWN, 0
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
PC-based visual stimuli for behavioural and electrophysiological studies of optic flow field detection.
Johnson AP, Horseman BG, Macauley MW, Barnes WJ., J. Neurosci. Methods 114(1), 2002
PMID: 11850039
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
Facts on optic flow.
Koenderink JJ, van Doorn AJ., Biol Cybern 56(4), 1987
PMID: 3607100

AUTHOR UNKNOWN, 0
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Optic flow is used to control human walking.
Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S., Nat. Neurosci. 4(2), 2001
PMID: 11175884
Variability in spike trains during constant and dynamic stimulation.
Warzecha AK, Egelhaaf M., Science 283(5409), 1999
PMID: 10082467
Common reference frame for neural coding of translational and rotational optic flow.
Wylie DR, Bischof WF, Frost BJ., Nature 392(6673), 1998
PMID: 9521321

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12736239
PubMed | Europe PMC

Suchen in

Google Scholar