Robustness of the tuning of fly visual interneurons to rotatory optic flow
Karmeier K, Krapp HG, Egelhaaf M (2003)
Journal of neurophysiology 90(3): 1626-1634.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Autor*in
Karmeier, Katja;
Krapp, Holger G.;
Egelhaaf, MartinUniBi
Einrichtung
Abstract / Bemerkung
The sophisticated receptive field organization of motion-sensitive tangential cells in the visual system of the blowfly Calliphora vicina matches the structure of particular optic flow fields. Hypotheses on the tuning of particular tangential cells to rotatory self-motion are based on local motion measurements. So far, tangential cells have never been tested with global optic flow stimuli. Therefore we measured the responses of an identifiable neuron, the V1 tangential cell, to wide-field motion stimuli mimicking optic flow fields similar to those the fly encounters during particular self-motions. The stimuli were generated by a "planetarium-projector," casting a pattern of moving light dots on a large spherical projection screen. We determined the tuning curves of the V1-cell to optic flow fields as induced by the animal during 1) rotation about horizontally aligned body axes, 2) upward/downward translation, and 3) a combination of both components. We found that the V1-cell does not respond as specifically to self-rotations, as had been concluded from its receptive field organization. The neuron responds strongly to upward translation and its tuning to rotations is much coarser than expected. The discrepancies between the responses to global optic flow and the predictions based on the receptive field organization are likely due to nonlinear integration properties of tangential neurons. Response parameters like orientation, shape, and width of the tuning curve are largely unaffected by changes in rotation velocity or a superposition of rotational and translational optic flow.
Erscheinungsjahr
2003
Zeitschriftentitel
Journal of neurophysiology
Band
90
Ausgabe
3
Seite(n)
1626-1634
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1773422
Zitieren
Karmeier K, Krapp HG, Egelhaaf M. Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology. 2003;90(3):1626-1634.
Karmeier, K., Krapp, H. G., & Egelhaaf, M. (2003). Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology, 90(3), 1626-1634. https://doi.org/10.1152/jn.00234.2003
Karmeier, Katja, Krapp, Holger G., and Egelhaaf, Martin. 2003. “Robustness of the tuning of fly visual interneurons to rotatory optic flow”. Journal of neurophysiology 90 (3): 1626-1634.
Karmeier, K., Krapp, H. G., and Egelhaaf, M. (2003). Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology 90, 1626-1634.
Karmeier, K., Krapp, H.G., & Egelhaaf, M., 2003. Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology, 90(3), p 1626-1634.
K. Karmeier, H.G. Krapp, and M. Egelhaaf, “Robustness of the tuning of fly visual interneurons to rotatory optic flow”, Journal of neurophysiology, vol. 90, 2003, pp. 1626-1634.
Karmeier, K., Krapp, H.G., Egelhaaf, M.: Robustness of the tuning of fly visual interneurons to rotatory optic flow. Journal of neurophysiology. 90, 1626-1634 (2003).
Karmeier, Katja, Krapp, Holger G., and Egelhaaf, Martin. “Robustness of the tuning of fly visual interneurons to rotatory optic flow”. Journal of neurophysiology 90.3 (2003): 1626-1634.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
5ad80d5755be67d7b4843a872d19d2bf
Daten bereitgestellt von European Bioinformatics Institute (EBI)
21 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Aerodynamics, sensing and control of insect-scale flapping-wing flight.
Shyy W, Kang CK, Chirarattananon P, Ravi S, Liu H., Proc Math Phys Eng Sci 472(2186), 2016
PMID: 27118897
Shyy W, Kang CK, Chirarattananon P, Ravi S, Liu H., Proc Math Phys Eng Sci 472(2186), 2016
PMID: 27118897
An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila.
Suver MP, Huda A, Iwasaki N, Safarik S, Dickinson MH., J Neurosci 36(46), 2016
PMID: 27852783
Suver MP, Huda A, Iwasaki N, Safarik S, Dickinson MH., J Neurosci 36(46), 2016
PMID: 27852783
Encoding of yaw in the presence of distractor motion: studies in a fly motion sensitive neuron.
Roy S, Sinha SR, de Ruyter van Steveninck R., J Neurosci 35(16), 2015
PMID: 25904799
Roy S, Sinha SR, de Ruyter van Steveninck R., J Neurosci 35(16), 2015
PMID: 25904799
Texture-defined objects influence responses of blowfly motion-sensitive neurons under natural dynamical conditions.
Ullrich TW, Kern R, Egelhaaf M., Front Integr Neurosci 8(), 2014
PMID: 24808836
Ullrich TW, Kern R, Egelhaaf M., Front Integr Neurosci 8(), 2014
PMID: 24808836
Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis.
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Octopaminergic modulation of a fly visual motion-sensitive neuron during stimulation with naturalistic optic flow.
Rien D, Kern R, Kurtz R., Front Behav Neurosci 7(), 2013
PMID: 24194704
Rien D, Kern R, Kurtz R., Front Behav Neurosci 7(), 2013
PMID: 24194704
Integration of binocular optic flow in cervical neck motor neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22674287
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22674287
Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons.
Rien D, Kern R, Kurtz R., Eur J Neurosci 36(8), 2012
PMID: 22775326
Rien D, Kern R, Kurtz R., Eur J Neurosci 36(8), 2012
PMID: 22775326
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network.
Borst A, Weber F., PLoS One 6(1), 2011
PMID: 21305019
Borst A, Weber F., PLoS One 6(1), 2011
PMID: 21305019
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Local and global motion preferences in descending neurons of the fly.
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
Wertz A, Haag J, Borst A., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(12), 2009
PMID: 19830435
Adaptation changes directional sensitivity in a visual motion-sensitive neuron of the fly.
Kalb J, Egelhaaf M, Kurtz R., Vision Res 48(16), 2008
PMID: 18556040
Kalb J, Egelhaaf M, Kurtz R., Vision Res 48(16), 2008
PMID: 18556040
Visuomotor transformation in the fly gaze stabilization system.
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Huston SJ, Krapp HG., PLoS Biol 6(7), 2008
PMID: 18651791
Synapses in the fly motion-vision pathway: evidence for a broad range of signal amplitudes and dynamics.
Beckers U, Egelhaaf M, Kurtz R., J Neurophysiol 97(3), 2007
PMID: 17215505
Beckers U, Egelhaaf M, Kurtz R., J Neurophysiol 97(3), 2007
PMID: 17215505
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc Natl Acad Sci U S A 104(24), 2007
PMID: 17551009
Cuntz H, Haag J, Forstner F, Segev I, Borst A., Proc Natl Acad Sci U S A 104(24), 2007
PMID: 17551009
Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes.
Strausfeld NJ, Sinakevitch I, Okamura JY., Dev Neurobiol 67(10), 2007
PMID: 17638381
Strausfeld NJ, Sinakevitch I, Okamura JY., Dev Neurobiol 67(10), 2007
PMID: 17638381
Reciprocal inhibitory connections within a neural network for rotational optic-flow processing.
Haag J, Borst A., Front Neurosci 1(1), 2007
PMID: 18982122
Haag J, Borst A., Front Neurosci 1(1), 2007
PMID: 18982122
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J Neurophysiol 96(3), 2006
PMID: 16687623
Population coding of self-motion: applying bayesian analysis to a population of visual interneurons in the fly.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 94(3), 2005
PMID: 15901759
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 94(3), 2005
PMID: 15901759
51 References
Daten bereitgestellt von Europe PubMed Central.
Simulation of self-motion in tethered flying insects: an optical flow field for locusts.
Baader A., J. Neurosci. Methods 38(2-3), 1991
PMID: 1784122
Baader A., J. Neurosci. Methods 38(2-3), 1991
PMID: 1784122
Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons.
Borst A, Egelhaaf M, Haag J., J Comput Neurosci 2(1), 1995
PMID: 8521280
Borst A, Egelhaaf M, Haag J., J Comput Neurosci 2(1), 1995
PMID: 8521280
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
AUTHOR UNKNOWN, 0
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
AUTHOR UNKNOWN, 0
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
AUTHOR UNKNOWN, 0
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
AUTHOR UNKNOWN, 0
Wide-field, motion-sensitive neurons and matched filters for optic flow fields.
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
Franz MO, Krapp HG., Biol Cybern 83(3), 2000
PMID: 11007295
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
PC-based visual stimuli for behavioural and electrophysiological studies of optic flow field detection.
Johnson AP, Horseman BG, Macauley MW, Barnes WJ., J. Neurosci. Methods 114(1), 2002
PMID: 11850039
Johnson AP, Horseman BG, Macauley MW, Barnes WJ., J. Neurosci. Methods 114(1), 2002
PMID: 11850039
Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway.
Karmeier K, Tabor R, Egelhaaf M, Krapp HG., Vis. Neurosci. 18(1), 2001
PMID: 11347806
Karmeier K, Tabor R, Egelhaaf M, Krapp HG., Vis. Neurosci. 18(1), 2001
PMID: 11347806
Visual position stabilization in the hummingbird hawk moth, Macroglossum stellatarum L. II. Electrophysiological analysis of neurons sensitive to wide-field image motion.
Kern R., J. Comp. Physiol. A 182(2), 1998
PMID: 9463921
Kern R., J. Comp. Physiol. A 182(2), 1998
PMID: 9463921
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534
AUTHOR UNKNOWN, 0
Estimation of self-motion by optic flow processing in single visual interneurons.
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
Krapp HG, Hengstenberg R., Nature 384(6608), 1996
PMID: 8945473
A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons.
Krapp HG, Hengstenberg R., Vision Res. 37(2), 1997
PMID: 9068822
Krapp HG, Hengstenberg R., Vision Res. 37(2), 1997
PMID: 9068822
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Optic flow is used to control human walking.
Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S., Nat. Neurosci. 4(2), 2001
PMID: 11175884
Warren WH Jr, Kay BA, Zosh WD, Duchon AP, Sahuc S., Nat. Neurosci. 4(2), 2001
PMID: 11175884
Variability in spike trains during constant and dynamic stimulation.
Warzecha AK, Egelhaaf M., Science 283(5409), 1999
PMID: 10082467
Warzecha AK, Egelhaaf M., Science 283(5409), 1999
PMID: 10082467
Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly.
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Warzecha AK, Kurtz R, Egelhaaf M., Neuroscience 119(4), 2003
PMID: 12831867
Visual system of the European hummingbird hawkmoth Macroglossum stellatarum (Sphingidae, Lepidoptera): motion-sensitive interneurons of the lobula plate.
Wicklein M, Varju D., J. Comp. Neurol. 408(2), 1999
PMID: 10333274
Wicklein M, Varju D., J. Comp. Neurol. 408(2), 1999
PMID: 10333274
Common reference frame for neural coding of translational and rotational optic flow.
Wylie DR, Bischof WF, Frost BJ., Nature 392(6673), 1998
PMID: 9521321
Wylie DR, Bischof WF, Frost BJ., Nature 392(6673), 1998
PMID: 9521321
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 12736239
PubMed | Europe PMC
Suchen in