Vision in flying insects

Egelhaaf M, Kern R (2002)
Current opinion in neurobiology 12(6): 699-706.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Vision guides flight behaviour in numerous insects. Despite their small brain, insects easily outperform current man-made autonomous vehicles in many respects. Examples are the virtuosic chasing manoeuvres male flies perform as part of their mating behaviour and the ability of bees to assess, on the basis of visual motion cues, the distance travelled in a novel environment. Analyses at both the behavioural and neuronal levels are beginning to unveil reasons for such extraordinary capabilities of insects. One recipe for their success is the adaptation of visual information processing to the specific requirements of the behavioural tasks and to the specific spatiotemporal properties of the natural input.
Insects; Behaviour; Visually guided orientation; Neuronal circuits; Visual motion
Current opinion in neurobiology
Page URI


Egelhaaf M, Kern R. Vision in flying insects. Current opinion in neurobiology. 2002;12(6):699-706.
Egelhaaf, M., & Kern, R. (2002). Vision in flying insects. Current opinion in neurobiology, 12(6), 699-706.
Egelhaaf, Martin, and Kern, Roland. 2002. “Vision in flying insects”. Current opinion in neurobiology 12 (6): 699-706.
Egelhaaf, M., and Kern, R. (2002). Vision in flying insects. Current opinion in neurobiology 12, 699-706.
Egelhaaf, M., & Kern, R., 2002. Vision in flying insects. Current opinion in neurobiology, 12(6), p 699-706.
M. Egelhaaf and R. Kern, “Vision in flying insects”, Current opinion in neurobiology, vol. 12, 2002, pp. 699-706.
Egelhaaf, M., Kern, R.: Vision in flying insects. Current opinion in neurobiology. 12, 699-706 (2002).
Egelhaaf, Martin, and Kern, Roland. “Vision in flying insects”. Current opinion in neurobiology 12.6 (2002): 699-706.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of optic flow pooling in insect flight control in cluttered environments.
Lecoeur J, Dacke M, Floreano D, Baird E., Sci Rep 9(1), 2019
PMID: 31118454
Transfer of Visual Learning Between a Virtual and a Real Environment in Honey Bees: The Role of Active Vision.
Buatois A, Flumian C, Schultheiss P, Avarguès-Weber A, Giurfa M., Front Behav Neurosci 12(), 2018
PMID: 30057530
Two distance memories in desert ants-Modes of interaction.
Wolf H, Wittlinger M, Pfeffer SE., PLoS One 13(10), 2018
PMID: 30304010
Mechanics of the thorax in flies.
Deora T, Gundiah N, Sane SP., J Exp Biol 220(pt 8), 2017
PMID: 28424311
Associative visual learning by tethered bees in a controlled visual environment.
Buatois A, Pichot C, Schultheiss P, Sandoz JC, Lazzari CR, Chittka L, Avarguès-Weber A, Giurfa M., Sci Rep 7(1), 2017
PMID: 29018218
Evidence for Visually Mediated Copulation Frequency in the Scarab Beetle Anomala corpulenta
Miao J, Wu YQ, Li KB, Jiang YL, Gong Zj, Duan Y, Li T., Journal of insect behavior. 28(2), 2015
PMID: IND601237755
Enhancement of prominent texture cues in fly optic flow processing.
Kurtz R., Front Neural Circuits 6(), 2012
PMID: 23112763
Visual stabilization dynamics are enhanced by standing flight velocity.
Theobald JC, Ringach DL, Frye MA., Biol Lett 6(3), 2010
PMID: 19955168
Dynamics of optomotor responses in Drosophila to perturbations in optic flow.
Theobald JC, Ringach DL, Frye MA., J Exp Biol 213(pt 8), 2010
PMID: 20348349
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol 8(), 2010
PMID: 20384983
Frequency response of lift control in Drosophila.
Graetzel CF, Nelson BJ, Fry SN., J R Soc Interface 7(52), 2010
PMID: 20462877
Fidelity of adaptive phototaxis.
Drescher K, Goldstein RE, Tuval I., Proc Natl Acad Sci U S A 107(25), 2010
PMID: 20534560
The many facets of adaptation in fly visual motion processing.
Kurtz R., Commun Integr Biol 2(1), 2009
PMID: 19704857
The motion after-effect: local and global contributions to contrast sensitivity.
Nordström K, O'Carroll DC., Proc Biol Sci 276(1662), 2009
PMID: 19324825
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput Biol 5(11), 2009
PMID: 19893631
Red specks on honey bees (Apis mellifera).
Mayer J., Lab Anim (NY) 34(7), 2005
PMID: 15995692
Are Drosophila a useful model for understanding the toxicity of inhaled oxidative pollutants: a review.
Wilson M, Widdicombe JH, Gohil K, Burtis KC, Reznick AZ, Cross CE, Eiserich JP., Inhal Toxicol 17(13), 2005
PMID: 16195212
Visually guided orientation in flies: case studies in computational neuroethology.
Egelhaaf M, Böddeker N, Kern R, Kretzberg J, Lindemann JP, Warzecha AK., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(6), 2003
PMID: 12750938
A signature of salience in the Drosophila brain.
Frye MA, Dickinson MH., Nat Neurosci 6(6), 2003
PMID: 12771957
A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances.
Hrncir M, Jarau S, Zucchi R, Barth FG., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(10), 2003
PMID: 12928953

71 References

Daten bereitgestellt von Europe PubMed Central.

Motion detection in insect orientation and navigation.
Srinivasan MV, Poteser M, Kral K., Vision Res. 39(16), 1999
PMID: 10492835
Encoding of motion in real time by the fly visual system.
Egelhaaf M, Warzecha AK., Curr. Opin. Neurobiol. 9(4), 1999
PMID: 10448158
Seeing what is coming: building collision-sensitive neurones.
Rind FC, Simmons PJ., Trends Neurosci. 22(5), 1999
PMID: 10322494
Visual navigation in flying insects.
Srinivasan MV, Zhang SW., Int. Rev. Neurobiol. 44(), 2000
PMID: 10605642
Fly flight: a model for the neural control of complex behavior.
Frye MA, Dickinson MH., Neuron 32(3), 2001
PMID: 11709150
Neural encoding of behaviourally relevant visual-motion information in the fly.
Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK., Trends Neurosci. 25(2), 2002
PMID: 11814562
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Flights of learning
Collett, Curr Dir Psychol Sci 5(), 1996
Memory use in insect visual navigation.
Collett TS, Collett M., Nat. Rev. Neurosci. 3(7), 2002
PMID: 12094210
The optomotor equilibrium of the Drosophila navigation system
Götz, J Comp Physiol 99(), 1975
Optomotor course control in flies with largely asymmetric visual input.
Kern R, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659042
Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis.
Ronacher B, Gallizzi K, Wohlgemuth S, Wehner R., J. Exp. Biol. 203(Pt 7), 2000
PMID: 10708632
Ant odometry in the third dimension.
Wohlgemuth S, Ronacher B, Wehner R., Nature 411(6839), 2001
PMID: 11459057
Distance estimation by foraging honeybees
Esch H, Burns J., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317542
Honeybee navigation: nature and calibration of the "odometer".
Srinivasan MV, Zhang S, Altwein M, Tautz J., Science 287(5454), 2000
PMID: 10657298
Honeybee dances communicate distances measured by optic flow.
Esch HE, Zhang S, Srinivasan MV, Tautz J., Nature 411(6837), 2001
PMID: 11385571
Chasing and pursuit in the dolichopodid fly Poecilobothrus nobilitatus
Land, J Comp Physiol [A] 173(), 1993
Visual control of flight behaviour in the hoverfly Syritta pipiens L
Collett, J Comp Physiol 99(), 1975
Chasing behaviour of houseflies (Fannia canicularis). A description and analysis
Land, J Comp Physiol 89(), 1974
Flight performance and visual control of the flight of the free-flying housefly (Musca domestica). II. Pursuit of targets
Wagner, Phil Trans R Soc Lond B 312(), 1986
Prey pursuit and interception in dragonflies.
Olberg RM, Worthington AH, Venator KR., J. Comp. Physiol. A 186(2), 2000
PMID: 10707313
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694

Variations in the structure and design of compound eyes
Land, 1989
Sexual dimorphism matches photoreceptor performance to behavioural requirements.
Hornstein EP, O'Carroll DC, Anderson JC, Laughlin SB., Proc. Biol. Sci. 267(1457), 2000
PMID: 11416917
Variations in photoreceptor response dynamics across the fly retina
Burton, J Neurophysiol 86(), 2001
The photoreceptor array of the dipteran retina
Hardie, Trends Neurosci 9(), 1986
Sexually dimporphic interneuron arrangements in the fly visual system
Hausen, Proc R Soc Lond Ser B 208(), 1980
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Computation of object approach by a wide-field, motion-sensitive neuron.
Gabbiani F, Krapp HG, Laurent G., J. Neurosci. 19(3), 1999
PMID: 9920674
Invariance of angular threshold computation in a wide-field looming-sensitive neuron.
Gabbiani F, Mo C, Laurent G., J. Neurosci. 21(1), 2001
PMID: 11150349
Neuronal matched filters for optic flow processing in flying insects
Krapp, 2000
Monocular and binocular computation of motion in the lobula plate of the fly
Hausen, Verh Dtsch Zool Ges 74(), 1981
Synaptic interactions increase optic flow specificity.
Horstmann W, Egelhaaf M, Warzecha AK., Eur. J. Neurosci. 12(6), 2000
PMID: 10886355
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507

Neuronal encoding of visual motion in real-time
Warzecha, 2001
Real-time encoding of motion: answerable questions and questionable answers from the fly's visual system
Ruyter, 2001
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Neural processing of naturalistic optic flow
Kern, J Neurosci 21:RC139(), 2001
Outdoor performance of a motion-sensitive neuron in the blowfly.
Egelhaaf M, Grewe J, Kern R, Warzecha AK., Vision Res. 41(27), 2001
PMID: 11712978
Neural coding of naturalistic motion stimuli.
Lewen GD, Bialek W, de Ruyter van Steveninck RR., Network 12(3), 2001
PMID: 11563532
Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable
Warzecha, Phil Trans R Soc Lond B 351(), 1996
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Neuronal processing of behaviourally generated optic flow: experiments and model simulations.
Kern R, Lutterklas M, Petereit C, Lindemann JP, Egelhaaf M., Network 12(3), 2001
PMID: 11563534

Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency
Maddess, Proc R Soc Lond Ser B 225(), 1985
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly, Calliphora erythrocephala
de, Biol Cybern 54(), 1986
Temporal modulation of luminance adapts time constant of fly movement detectors
Borst, Biol Cybern 56(), 1987
Adaptation and the temporal delay filter of fly motion detectors.
Harris RA, O'Carroll DC, Laughlin SB., Vision Res. 39(16), 1999
PMID: 10492824
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Efficiency and ambiguity in an adaptive neural code.
Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR., Nature 412(6849), 2001
PMID: 11518957
Afterimages in fly motion vision.
Harris RA, O'Carroll DC., Vision Res. 42(14), 2002
PMID: 12127104
Embodying natural vision into machines
Srinivasan, 1997
On robots and flies: modeling the visual orientation behavior of flies
Huber, Robotics and Autonomous Systems 29(), 1999
Biomimetic robot navigation
Franz, Robots and Autonomous Systems 30(), 2000
A silicon implementation of the fly's optomotor control system.
Harrison RR, Koch C., Neural Comput 12(10), 2000
PMID: 11032035
Landing strategies in honeybees, and possible applications to autonomous airborne vehicles.
Srinivasan MV, Zhang S, Chahl JS., Biol. Bull. 200(2), 2001
PMID: 11341587

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 12490262
PubMed | Europe PMC

Suchen in

Google Scholar