Steering a virtual blowfly: simulation of visual pursuit
Böddeker N, Egelhaaf M (2003)
Proceedings of the Royal Society B, Biological sciences 270(1527): 1971-1978.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
Stichworte
Vision;
Model;
Sensorimotor control;
Fly;
Smooth pursuit;
Chasing
Erscheinungsjahr
2003
Zeitschriftentitel
Proceedings of the Royal Society B, Biological sciences
Band
270
Ausgabe
1527
Seite(n)
1971-1978
ISSN
0962-8452
eISSN
1471-2954
Page URI
https://pub.uni-bielefeld.de/record/1773392
Zitieren
Böddeker N, Egelhaaf M. Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences. 2003;270(1527):1971-1978.
Böddeker, N., & Egelhaaf, M. (2003). Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences, 270(1527), 1971-1978. https://doi.org/10.1098/rspb.2003.2463
Böddeker, Norbert, and Egelhaaf, Martin. 2003. “Steering a virtual blowfly: simulation of visual pursuit”. Proceedings of the Royal Society B, Biological sciences 270 (1527): 1971-1978.
Böddeker, N., and Egelhaaf, M. (2003). Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences 270, 1971-1978.
Böddeker, N., & Egelhaaf, M., 2003. Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences, 270(1527), p 1971-1978.
N. Böddeker and M. Egelhaaf, “Steering a virtual blowfly: simulation of visual pursuit”, Proceedings of the Royal Society B, Biological sciences, vol. 270, 2003, pp. 1971-1978.
Böddeker, N., Egelhaaf, M.: Steering a virtual blowfly: simulation of visual pursuit. Proceedings of the Royal Society B, Biological sciences. 270, 1971-1978 (2003).
Böddeker, Norbert, and Egelhaaf, Martin. “Steering a virtual blowfly: simulation of visual pursuit”. Proceedings of the Royal Society B, Biological sciences 270.1527 (2003): 1971-1978.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
fa86d9f55bd985dc96d7aab68356cf9b
Daten bereitgestellt von European Bioinformatics Institute (EBI)
5 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Photoreceptor signalling is sufficient to explain the detectability threshold of insect aerial pursuers.
Rigosi E, Wiederman SD, O'Carroll DC., J Exp Biol 220(pt 23), 2017
PMID: 29187619
Rigosi E, Wiederman SD, O'Carroll DC., J Exp Biol 220(pt 23), 2017
PMID: 29187619
The Role of Motion Extrapolation in Amphibian Prey Capture.
Borghuis BG, Leonardo A., J Neurosci 35(46), 2015
PMID: 26586829
Borghuis BG, Leonardo A., J Neurosci 35(46), 2015
PMID: 26586829
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó I., Biol Cybern 106(4-5), 2012
PMID: 22648568
Rañó I., Biol Cybern 106(4-5), 2012
PMID: 22648568
Chasing behavior and optomotor following in free-flying male blowflies: flight performance and interactions of the underlying control systems.
Trischler C, Kern R, Egelhaaf M., Front Behav Neurosci 4(), 2010
PMID: 20514339
Trischler C, Kern R, Egelhaaf M., Front Behav Neurosci 4(), 2010
PMID: 20514339
Visual motor computations in insects.
Srinivasan MV, Zhang S., Annu Rev Neurosci 27(), 2004
PMID: 15217347
Srinivasan MV, Zhang S., Annu Rev Neurosci 27(), 2004
PMID: 15217347
20 References
Daten bereitgestellt von Europe PubMed Central.
Model of a predatory stealth behaviour camouflaging motion.
Anderson AJ, McOwan PW., Proc. Biol. Sci. 270(1514), 2003
PMID: 12641903
Anderson AJ, McOwan PW., Proc. Biol. Sci. 270(1514), 2003
PMID: 12641903
Chasing a dummy target: smooth pursuit and velocity control in male blowflies.
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
Variations in photoreceptor response dynamics across the fly retina.
Burton BG, Tatler BW, Laughlin SB., J. Neurophysiol. 86(2), 2001
PMID: 11495963
Burton BG, Tatler BW, Laughlin SB., J. Neurophysiol. 86(2), 2001
PMID: 11495963
Wing rotation and the aerodynamic basis of insect flight.
Dickinson MH, Lehmann FO, Sane SP., Science 284(5422), 1999
PMID: 10373107
Dickinson MH, Lehmann FO, Sane SP., Science 284(5422), 1999
PMID: 10373107
The novel aerodynamics of insect flight: applications to micro-air vehicles.
Ellington CP., J. Exp. Biol. 202(Pt 23), 1999
PMID: 10562527
Ellington CP., J. Exp. Biol. 202(Pt 23), 1999
PMID: 10562527
Computation of object approach by a wide-field, motion-sensitive neuron.
Gabbiani F, Krapp HG, Laurent G., J. Neurosci. 19(3), 1999
PMID: 9920674
Gabbiani F, Krapp HG, Laurent G., J. Neurosci. 19(3), 1999
PMID: 9920674
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Activity of descending contralateral movement detector neurons and collision avoidance behaviour in response to head-on visual stimuli in locusts.
Gray JR, Lee JK, Robertson RM., J. Comp. Physiol. A 187(2), 2001
PMID: 15524000
Gray JR, Lee JK, Robertson RM., J. Comp. Physiol. A 187(2), 2001
PMID: 15524000
Descending pathways connecting the male-specific visual system of flies to the neck and flight motor.
Gronenberg W, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723432
Gronenberg W, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723432
Visual acuity for moving objects in first- and second-order neurons of the fly compound eye.
Juusola M, French AS., J. Neurophysiol. 77(3), 1997
PMID: 9084613
Juusola M, French AS., J. Neurophysiol. 77(3), 1997
PMID: 9084613
Information processing by graded-potential transmission through tonically active synapses.
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Juusola M, French AS, Uusitalo RO, Weckstrom M., Trends Neurosci. 19(7), 1996
PMID: 8799975
Two methods for calculating the responses of photoreceptors to moving objects.
Korenberg MJ, Juusola M, French AS., Ann Biomed Eng 26(2), 1998
PMID: 9525770
Korenberg MJ, Juusola M, French AS., Ann Biomed Eng 26(2), 1998
PMID: 9525770
FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow.
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Lindemann JP, Kern R, Michaelis C, Meyer P, van Hateren JH, Egelhaaf M., Vision Res. 43(7), 2003
PMID: 12639604
Visual motion processing and sensory-motor integration for smooth pursuit eye movements.
Lisberger SG, Morris EJ, Tychsen L., Annu. Rev. Neurosci. 10(), 1987
PMID: 3551767
Lisberger SG, Morris EJ, Tychsen L., Annu. Rev. Neurosci. 10(), 1987
PMID: 3551767
Visual control of orientation behaviour in the fly. Part I. A quantitative analysis.
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441
Reichardt W, Poggio T., Q. Rev. Biophys. 9(3), 1976
PMID: 790441
Seeing what is coming: building collision-sensitive neurones.
Rind FC, Simmons PJ., Trends Neurosci. 22(5), 1999
PMID: 10322494
Rind FC, Simmons PJ., Trends Neurosci. 22(5), 1999
PMID: 10322494
Stabilizing gaze in flying blowflies.
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Schilstra C, van Hateren JH., Nature 395(6703), 1998
PMID: 9790186
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
The fly can discriminate movement at signal/noise ratios as low as one-eighth.
Srinivasan MV, Bernard GD., Vision Res. 17(5), 1977
PMID: 878343
Srinivasan MV, Bernard GD., Vision Res. 17(5), 1977
PMID: 878343
Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae (Diptera).
Zeil J., Cell Tissue Res. 229(3), 1983
PMID: 6839353
Zeil J., Cell Tissue Res. 229(3), 1983
PMID: 6839353
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 14561312
PubMed | Europe PMC
Suchen in