Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway

Karmeier K, Tabor R, Egelhaaf M, Krapp HG (2001)
Visual neuroscience 18(1): 1-8.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Karmeier, Katja; Tabor, Rico; Egelhaaf, MartinUniBi ; Krapp, Holger G.
Abstract / Bemerkung
The distribution of local preferred directions and motion sensitivities within the receptive fields of so-called tangential neurons in the fly visual system was previously found to match optic flow fields as induced by certain self-motions. The complex receptive-field organization of the tangential neurons and the recent evidence showing that the orderly development of the fly's peripheral visual system depends on visual experience led us to investigate whether or not early visual input is required to establish the functional receptive field properties of such tangential neurons. In electrophysiological investigations of two identified tangential neurons, it turned out that dark-hatched flies which were kept in complete darkness for 2 days develop basically the same receptive-field organization as flies which were raised under seasonal light/dark conditions and were free to move in their cages. We did not find any evidence that the development of the sophisticated receptive-field organization of tangential neurons depends on sensory experience. Instead, the input to the tangential neurons seems to be "hardwired" and the specificity of these cells to optic flow induced during self-motions of the animal may have evolved on a phylogenetical time scale.
Stichworte
Visual system; Optic flow; Sensory experience; Receptive field; Calliphora
Erscheinungsjahr
2001
Zeitschriftentitel
Visual neuroscience
Band
18
Ausgabe
1
Seite(n)
1-8
ISSN
0952-5238
Page URI
https://pub.uni-bielefeld.de/record/1773376

Zitieren

Karmeier K, Tabor R, Egelhaaf M, Krapp HG. Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Visual neuroscience. 2001;18(1):1-8.
Karmeier, K., Tabor, R., Egelhaaf, M., & Krapp, H. G. (2001). Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Visual neuroscience, 18(1), 1-8. https://doi.org/10.1017/S0952523801181010
Karmeier, Katja, Tabor, Rico, Egelhaaf, Martin, and Krapp, Holger G. 2001. “Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway”. Visual neuroscience 18 (1): 1-8.
Karmeier, K., Tabor, R., Egelhaaf, M., and Krapp, H. G. (2001). Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Visual neuroscience 18, 1-8.
Karmeier, K., et al., 2001. Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Visual neuroscience, 18(1), p 1-8.
K. Karmeier, et al., “Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway”, Visual neuroscience, vol. 18, 2001, pp. 1-8.
Karmeier, K., Tabor, R., Egelhaaf, M., Krapp, H.G.: Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway. Visual neuroscience. 18, 1-8 (2001).
Karmeier, Katja, Tabor, Rico, Egelhaaf, Martin, and Krapp, Holger G. “Early visual experience and the receptive-field organization of optic flow processing interneurons in the fly motion pathway”. Visual neuroscience 18.1 (2001): 1-8.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:08Z
MD5 Prüfsumme
1f0ab3289433859d50dde880dda7ea71


18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Synaptic circuits and their variations within different columns in the visual system of Drosophila.
Takemura SY, Xu CS, Lu Z, Rivlin PK, Parag T, Olbris DJ, Plaza S, Zhao T, Katz WT, Umayam L, Weaver C, Hess HF, Horne JA, Nunez-Iglesias J, Aniceto R, Chang LA, Lauchie S, Nasca A, Ogundeyi O, Sigmund C, Takemura S, Tran J, Langille C, Le Lacheur K, McLin S, Shinomiya A, Chklovskii DB, Meinertzhagen IA, Scheffer LK., Proc Natl Acad Sci U S A 112(44), 2015
PMID: 26483464
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J Neurosci 34(6), 2014
PMID: 24501364
Subcellular mapping of dendritic activity in optic flow processing neurons.
Hopp E, Borst A, Haag J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(5), 2014
PMID: 24647929
The natural variation of a neural code.
Kfir Y, Renan I, Schneidman E, Segev R., PLoS One 7(3), 2012
PMID: 22427973
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordström K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Seeing things in motion: models, circuits, and mechanisms.
Borst A, Euler T., Neuron 71(6), 2011
PMID: 21943597
Brain plasticity in Diptera and Hymenoptera.
Groh C, Meinertzhagen IA., Front Biosci (Schol Ed) 2(), 2010
PMID: 20036946
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J Neurophysiol 102(6), 2009
PMID: 19812292
Robustness of the tuning of fly visual interneurons to rotatory optic flow.
Karmeier K, Krapp HG, Egelhaaf M., J Neurophysiol 90(3), 2003
PMID: 12736239
Vision in flying insects.
Egelhaaf M, Kern R., Curr Opin Neurobiol 12(6), 2002
PMID: 12490262
Outdoor performance of a motion-sensitive neuron in the blowfly.
Egelhaaf M, Grewe J, Kern R, Warzecha AK., Vision Res 41(27), 2001
PMID: 11712978

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 11347806
PubMed | Europe PMC

Suchen in

Google Scholar