The motor control of aimed limb movements in an insect
Page KL, Zakotnik J, Dürr V, Matheson T (2008)
Journal of Neurophysiology 99(2): 484-499.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Page, K. L.;
Zakotnik, J.;
Dürr, Volker;
Matheson, T.
Einrichtung
Abstract / Bemerkung
Limb movements that are aimed toward tactile stimuli of the body provide a powerful paradigm with which to study the transformation of motor activity into context-dependent action. We relate the activity of excitatory motor neurons of the locust femoro-tibial joint to the consequent kinematics of hind leg movements made during aimed scratching. There is posture-dependence of motor neuron activity, which is stronger in large amplitude (putative fast) than in small (putative slow and intermediate) motor neurons. We relate this posture dependency to biomechanical aspects of the musculo-skeletal system and explain the occurrence of passive tibial movements that occur in the absence of agonistic motor activity. There is little recorded co-activation of antagonistic tibial extensor and flexor motor neurons, and there is differential recruitment of proximal and distal flexor motor neurons. Large-amplitude motor neurons are often recruited soon after a switch in joint movement direction. Motor bursts containing large-amplitude spikes exhibit high spike rates of small-amplitude motor neurons. The fast extensor tibiae neuron, when recruited, exhibits a pattern of activity quite different to that seen during kicking, jumping, or righting: there is no co-activation of flexor motor neurons and no full tibial flexion. Changes in femoro-tibial joint angle and angular velocity are most strongly dependent on variations in the number of motor neuron spikes and the duration of motor bursts rather than on firing frequency. Our data demonstrate how aimed scratching movements result from interactions between biomechanical features of the musculo-skeletal system and patterns of motor neuron recruitment.
Stichworte
transformation;
velocity;
movement;
Activity pattern;
activity;
action;
MOTOR;
Locust;
extensor;
Extensor tibiae;
fast motor neurons;
FETi;
flexor;
FREQUENCY;
hind leg;
insect;
JOINT;
joint angles;
jumping;
kicking;
Kinematics;
leg;
Leg movement;
limb;
limb movements;
Motor Neurons;
Motor control;
Motor Activity;
direction;
control;
biomechanics;
body;
burst;
Behaviour;
context-dependent;
tibial extensor;
tactile;
system;
STIMULI;
small;
SETi;
Scratching;
scratch;
righting;
Recruitment;
Posture;
Muscle;
MOVEMENTS;
neuron;
neurons;
NO;
PATTERNS
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Neurophysiology
Band
99
Ausgabe
2
Seite(n)
484-499
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/1681402
Zitieren
Page KL, Zakotnik J, Dürr V, Matheson T. The motor control of aimed limb movements in an insect. Journal of Neurophysiology. 2008;99(2):484-499.
Page, K. L., Zakotnik, J., Dürr, V., & Matheson, T. (2008). The motor control of aimed limb movements in an insect. Journal of Neurophysiology, 99(2), 484-499. https://doi.org/10.1152/jn.00922.2007
Page, K. L., Zakotnik, J., Dürr, Volker, and Matheson, T. 2008. “The motor control of aimed limb movements in an insect”. Journal of Neurophysiology 99 (2): 484-499.
Page, K. L., Zakotnik, J., Dürr, V., and Matheson, T. (2008). The motor control of aimed limb movements in an insect. Journal of Neurophysiology 99, 484-499.
Page, K.L., et al., 2008. The motor control of aimed limb movements in an insect. Journal of Neurophysiology, 99(2), p 484-499.
K.L. Page, et al., “The motor control of aimed limb movements in an insect”, Journal of Neurophysiology, vol. 99, 2008, pp. 484-499.
Page, K.L., Zakotnik, J., Dürr, V., Matheson, T.: The motor control of aimed limb movements in an insect. Journal of Neurophysiology. 99, 484-499 (2008).
Page, K. L., Zakotnik, J., Dürr, Volker, and Matheson, T. “The motor control of aimed limb movements in an insect”. Journal of Neurophysiology 99.2 (2008): 484-499.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
11 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Motor inhibition affects the speed but not accuracy of aimed limb movements in an insect.
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
Calas-List D, Clare AJ, Komissarova A, Nielsen TA, Matheson T., J Neurosci 34(22), 2014
PMID: 24872556
Role of a looming-sensitive neuron in triggering the defense behavior of the praying mantis Tenodera aridifolia.
Sato K, Yamawaki Y., J Neurophysiol 112(3), 2014
PMID: 24848471
Sato K, Yamawaki Y., J Neurophysiol 112(3), 2014
PMID: 24848471
Inhibitory motoneurons in arthropod motor control: organisation, function, evolution.
Wolf H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(8), 2014
PMID: 24965579
Wolf H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(8), 2014
PMID: 24965579
Dopaminergic modulation of phase reversal in desert locusts.
Alessi AM, O'Connor V, Aonuma H, Newland PL., Front Behav Neurosci 8(), 2014
PMID: 25426037
Alessi AM, O'Connor V, Aonuma H, Newland PL., Front Behav Neurosci 8(), 2014
PMID: 25426037
Female pheromones modulate flight muscle activation patterns during preflight warm-up.
Crespo JG, Vickers NJ, Goller F., J Neurophysiol 110(4), 2013
PMID: 23699056
Crespo JG, Vickers NJ, Goller F., J Neurophysiol 110(4), 2013
PMID: 23699056
Passive joint forces are tuned to limb use in insects and drive movements without motor activity.
Ache JM, Matheson T., Curr Biol 23(15), 2013
PMID: 23871240
Ache JM, Matheson T., Curr Biol 23(15), 2013
PMID: 23871240
Grooming Behavior as a Mechanism of Insect Disease Defense.
Zhukovskaya M, Yanagawa A, Forschler BT., Insects 4(4), 2013
PMID: 26462526
Zhukovskaya M, Yanagawa A, Forschler BT., Insects 4(4), 2013
PMID: 26462526
Passive resting state and history of antagonist muscle activity shape active extensions in an insect limb.
Ache JM, Matheson T., J Neurophysiol 107(10), 2012
PMID: 22357791
Ache JM, Matheson T., J Neurophysiol 107(10), 2012
PMID: 22357791
What's Next: Recruitment of a Grounded Predictive Body Model for Planning a Robot's Actions.
Schilling M, Cruse H., Front Psychol 3(), 2012
PMID: 23060845
Schilling M, Cruse H., Front Psychol 3(), 2012
PMID: 23060845
Functional recovery of aimed scratching movements after a graded proprioceptive manipulation.
Page KL, Matheson T., J Neurosci 29(12), 2009
PMID: 19321786
Page KL, Matheson T., J Neurosci 29(12), 2009
PMID: 19321786
Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.
Hooper SL, Guschlbauer C, Blümel M, Rosenbaum P, Gruhn M, Akay T, Büschges A., J Neurosci 29(13), 2009
PMID: 19339606
Hooper SL, Guschlbauer C, Blümel M, Rosenbaum P, Gruhn M, Akay T, Büschges A., J Neurosci 29(13), 2009
PMID: 19339606
47 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Motor patterns during kicking movements in the locust.
Burrows M., J. Comp. Physiol. A 176(3), 1995
PMID: 7707268
Burrows M., J. Comp. Physiol. A 176(3), 1995
PMID: 7707268
AUTHOR UNKNOWN, 0
The organization of inputs to motoneurons of the locust metathoracic leg.
Burrows M, Horridge GA., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 269(896), 1974
PMID: 4154463
Burrows M, Horridge GA., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 269(896), 1974
PMID: 4154463
Neural mechanism underlying behavior in the locust Schistocerca gregaria. 3. Topography of limb motorneurons in the metathoracic ganglion.
Burrows M, Hoyle G., J. Neurobiol. 4(2), 1973
PMID: 4697864
Burrows M, Hoyle G., J. Neurobiol. 4(2), 1973
PMID: 4697864
Physiological and Ultrastructural Characterization of a Central Synaptic Connection between Identified Motor Neurons in the Locust.
Burrows M, Watson AH, Brunn DE., Eur. J. Neurosci. 1(2), 1989
PMID: 12106160
Burrows M, Watson AH, Brunn DE., Eur. J. Neurosci. 1(2), 1989
PMID: 12106160
AUTHOR UNKNOWN, 0
Graded limb targeting in an insect is caused by the shift of a single movement pattern.
Durr V, Matheson T., J. Neurophysiol. 90(3), 2003
PMID: 12773499
Durr V, Matheson T., J. Neurophysiol. 90(3), 2003
PMID: 12773499
Some aspects of the efferent control of walking in three cockroach species.
Ewing AW, Manning A., J. Insect Physiol. 12(9), 1966
PMID: 6004922
Ewing AW, Manning A., J. Insect Physiol. 12(9), 1966
PMID: 6004922
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheel.
Gabriel JP, Scharstein H, Schmidt J, Buschges A., J. Neurobiol. 56(3), 2003
PMID: 12884263
Gabriel JP, Scharstein H, Schmidt J, Buschges A., J. Neurobiol. 56(3), 2003
PMID: 12884263
The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.
Guschlbauer C, Scharstein H, Buschges A., J. Exp. Biol. 210(Pt 6), 2007
PMID: 17337721
Guschlbauer C, Scharstein H, Buschges A., J. Exp. Biol. 210(Pt 6), 2007
PMID: 17337721
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified motorneurons in the metathoracic ganglion.
Hoyle G, Burrows M., J. Neurobiol. 4(1), 1973
PMID: 4703780
Hoyle G, Burrows M., J. Neurobiol. 4(1), 1973
PMID: 4703780
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Effects of load inversion in cockroach walking.
Larsen GS, Frazier SF, Fish SE, Zill SN., J. Comp. Physiol. A 176(2), 1995
PMID: 7884685
Larsen GS, Frazier SF, Fish SE, Zill SN., J. Comp. Physiol. A 176(2), 1995
PMID: 7884685
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Load compensation in targeted limb movements of an insect.
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699
Matheson T, Durr V., J. Exp. Biol. 206(Pt 18), 2003
PMID: 12909699
AUTHOR UNKNOWN, 0
Wing hair sensilla underlying aimed hindleg scratching of the locust.
Page KL, Matheson T., J. Exp. Biol. 207(Pt 15), 2004
PMID: 15201302
Page KL, Matheson T., J. Exp. Biol. 207(Pt 15), 2004
PMID: 15201302
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running.
Watson JT, Ritzmann RE., J. Comp. Physiol. A 182(1), 1998
PMID: 9447710
Watson JT, Ritzmann RE., J. Comp. Physiol. A 182(1), 1998
PMID: 9447710
Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: II. Fast running.
Watson JT, Ritzmann RE., J. Comp. Physiol. A 182(1), 1998
PMID: 9447711
Watson JT, Ritzmann RE., J. Comp. Physiol. A 182(1), 1998
PMID: 9447711
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
A posture optimization algorithm for model-based motion capture of movement sequences.
Zakotnik J, Matheson T, Durr V., J. Neurosci. Methods 135(1-2), 2004
PMID: 15020088
Zakotnik J, Matheson T, Durr V., J. Neurosci. Methods 135(1-2), 2004
PMID: 15020088
Co-contraction and passive forces facilitate load compensation of aimed limb movements.
Zakotnik J, Matheson T, Durr V., J. Neurosci. 26(19), 2006
PMID: 16687491
Zakotnik J, Matheson T, Durr V., J. Neurosci. 26(19), 2006
PMID: 16687491
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 18032564
PubMed | Europe PMC
Suchen in