Influence of methylphenidate on brain development--an update of recent animal experiments.

Grund T, Lehmann K, Bock N, Rothenberger A, Teuchert-Noodt G (2006)
Behav Brain Funct 2(1): 2.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Grund, Thorsten; Lehmann, Konrad; Bock, Nathalie; Rothenberger, Aribert; Teuchert-Noodt, GertraudUniBi
Abstract / Bemerkung
Methylphenidate (MPH) is the most commonly used drug to treat attention deficit/hyperactivity disorder (ADHD) in children effectively and safely. In spite of its widespread application throughout one of the most plastic and sensitive phases of brain development, very little is known to date about its long-term effects on brain structure and function. Hence, this short review updates the influence of MPH on brain development, since recent human and animal studies suggest that MPH alters the dopaminergic system with long-term effects beyond the termination of treatment.Animal studies imply that the effects of MPH may depend on the neural responder system: Whereas structural and functional parameters are improved by MPH in animals with psychomotor impairments, they remain unaltered or get worse in healthy controls. While recent behavioural studies do not fully support such a differential effect of MPH in ADHD, the animal studies certainly prompt for further investigation of this issue. Furthermore, the abuse of MPH, when (rarely) intravenously applied, may even impair the maturation of dopaminergic fibres in subcortical brain areas. This argues for careful clinical assessment and diagnostics of ADHD symptomatology not only in conjunction with the prescription of MPH. Hence, one should be assured that MPH is only given to children with clear ADHD symptomatology leading to psychosocial impairment. The animal data suggest that under these conditions MPH is supportive for brain development and the related behaviour in children with ADHD.
Erscheinungsjahr
2006
Zeitschriftentitel
Behav Brain Funct
Band
2
Ausgabe
1
Seite(n)
2
ISSN
1744-9081
Page URI
https://pub.uni-bielefeld.de/record/1666062

Zitieren

Grund T, Lehmann K, Bock N, Rothenberger A, Teuchert-Noodt G. Influence of methylphenidate on brain development--an update of recent animal experiments. Behav Brain Funct. 2006;2(1):2.
Grund, T., Lehmann, K., Bock, N., Rothenberger, A., & Teuchert-Noodt, G. (2006). Influence of methylphenidate on brain development--an update of recent animal experiments. Behav Brain Funct, 2(1), 2. doi:10.1186/1744-9081-2-2
Grund, T., Lehmann, K., Bock, N., Rothenberger, A., and Teuchert-Noodt, G. (2006). Influence of methylphenidate on brain development--an update of recent animal experiments. Behav Brain Funct 2, 2.
Grund, T., et al., 2006. Influence of methylphenidate on brain development--an update of recent animal experiments. Behav Brain Funct, 2(1), p 2.
T. Grund, et al., “Influence of methylphenidate on brain development--an update of recent animal experiments.”, Behav Brain Funct, vol. 2, 2006, pp. 2.
Grund, T., Lehmann, K., Bock, N., Rothenberger, A., Teuchert-Noodt, G.: Influence of methylphenidate on brain development--an update of recent animal experiments. Behav Brain Funct. 2, 2 (2006).
Grund, Thorsten, Lehmann, Konrad, Bock, Nathalie, Rothenberger, Aribert, and Teuchert-Noodt, Gertraud. “Influence of methylphenidate on brain development--an update of recent animal experiments.”. Behav Brain Funct 2.1 (2006): 2.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:48:06Z
MD5 Prüfsumme
9ea8be303ca725eeb60f83a4808bcbad

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

From Clinical Application to Cognitive Enhancement: The Example of Methylphenidate.
Busardò FP, Kyriakou C, Cipolloni L, Zaami S, Frati P., Curr Neuropharmacol 14(1), 2016
PMID: 26813119
A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior.
Thanos PK, Robison LS, Steier J, Hwang YF, Cooper T, Swanson JM, Komatsu DE, Hadjiargyrou M, Volkow ND., Pharmacol Biochem Behav 131(), 2015
PMID: 25641666
Adolescent exposure to methylphenidate impairs serial pattern learning in the serial multiple choice (SMC) task in adult rats.
Rowan JD, McCarty MK, Kundey SM, Osburn CD, Renaud SM, Kelley BM, Matoushek AW, Fountain SB., Neurotoxicol Teratol 51(), 2015
PMID: 26225921
Withdrawal effect of chronic amphetamine exposure during adolescence on complex maze performance.
Krall DM, Lim SL, Cooper AM, Burleson PW, Rhoades DJ, Jacquemin SJ, Willmore DC, Spears FM, Willmore CB., Addict Biol 19(4), 2014
PMID: 23374198
The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design.
Bottelier MA, Schouw ML, Klomp A, Tamminga HG, Schrantee AG, Bouziane C, de Ruiter MB, Boer F, Ruhé HG, Denys D, Rijsman R, Lindauer RJ, Reitsma HB, Geurts HM, Reneman L., BMC Psychiatry 14(), 2014
PMID: 24552282
What influences clinicians' decisions about ADHD medication? Initial data from the Influences on Prescribing for ADHD Questionnaire (IPAQ).
Kovshoff H, Vrijens M, Thompson M, Yardley L, Hodgkins P, Sonuga-Barke EJ, Danckaerts M., Eur Child Adolesc Psychiatry 22(9), 2013
PMID: 23455602
Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies.
Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, Faraone SV, Biederman J., J Clin Psychiatry 74(9), 2013
PMID: 24107764
Acute dose-related differential effects of methylphenidate on murine cystometric parameters.
Choi SH, Cho YS, Cho ST, Lee T, Kim KH., Int Neurourol J 17(4), 2013
PMID: 24466462
Distinct age-dependent effects of methylphenidate on developing and adult prefrontal neurons.
Urban KR, Waterhouse BD, Gao WJ., Biol Psychiatry 72(10), 2012
PMID: 22609367
Age and genetic strain differences in response to chronic methylphenidate administration.
Yang PB, Cuellar DO, Swann AC, Dafny N., Behav Brain Res 218(1), 2011
PMID: 21111006
Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes.
Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F, Uhr M, Holsboer F, Rein T, Zschocke J., Neuropsychopharmacology 35(3), 2010
PMID: 19924110
Development of 5-HT transporter density and long-term effects of methylphenidate in an animal model of ADHD.
Roessner V, Manzke T, Becker A, Rothenberger A, Bock N., World J Biol Psychiatry 10(4 pt 2), 2009
PMID: 19172439
Aberrant functional activation in school age children at-risk for mathematical disability: a functional imaging study of simple arithmetic skill.
Davis N, Cannistraci CJ, Rogers BP, Gatenby JC, Fuchs LS, Anderson AW, Gore JC., Neuropsychologia 47(12), 2009
PMID: 19410589
Effect of postnatal methamphetamine trauma and adolescent methylphenidate treatment on adult hippocampal neurogenesis in gerbils.
Schaefers AT, Teuchert-Noodt G, Bagorda F, Brummelte S., Eur J Pharmacol 616(1-3), 2009
PMID: 19540225
Does repetitive Ritalin injection produce long-term effects on SD female adolescent rats?
Lee MJ, Yang PB, Wilcox VT, Burau KD, Swann AC, Dafny N., Neuropharmacology 57(3), 2009
PMID: 19540860
The neural development of an abstract concept of number.
Cantlon JF, Libertus ME, Pinel P, Dehaene S, Brannon EM, Pelphrey KA., J Cogn Neurosci 21(11), 2009
PMID: 19016605
Methylphenidate increases creatine kinase activity in the brain of young and adult rats.
Scaini G, Fagundes AO, Rezin GT, Gomes KM, Zugno AI, Quevedo J, Streck EL., Life Sci 83(23-24), 2008
PMID: 18938183
Tetrahydroisoquinoline derivatives: a new perspective on monoaminergic dysfunction in children with ADHD?
Roessner V, Walitza S, Riederer F, Hünnerkopf R, Rothenberger A, Gerlach M, Moser A., Behav Brain Funct 3(), 2007
PMID: 18070346
Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)--a neurological view.
Schneider M, Retz W, Coogan A, Thome J, Rösler M., Eur Arch Psychiatry Clin Neurosci 256 Suppl 1(), 2006
PMID: 16977550

120 References

Daten bereitgestellt von Europe PubMed Central.

ADHD – beyond core symptoms. Not only a European perspective
Rothenberger A, Dopfner M, Sergeant J, Steinhausen HC., 2004
How common is attention-deficit/hyperactivity disorder? Incidence in a population-based birth cohort in Rochester, Minn.
Barbaresi WJ, Katusic SK, Colligan RC, Pankratz VS, Weaver AL, Weber KJ, Mrazek DA, Jacobsen SJ., Arch Pediatr Adolesc Med 156(3), 2002
PMID: 11876664
Attention-deficit hyperactivity disorder.
Biederman J, Faraone SV., Lancet 366(9481), 2005
PMID: 16023516
Animal models of attention-deficit hyperactivity disorder.
Russell VA, Sagvolden T, Johansen EB., Behav Brain Funct 1(), 2005
PMID: 16022733
EINAQ -- a European educational initiative on Attention-Deficit Hyperactivity Disorder and associated problems.
Rothenberger A, Danckaerts M, Dopfner M, Sergeant J, Steinhausen HC., Eur Child Adolesc Psychiatry 13 Suppl 1(), 2004
PMID: 15322954
Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens.
Teicher MH, Andersen SL, Hostetter JC Jr., Brain Res. Dev. Brain Res. 89(2), 1995
PMID: 8612321
Development of the dopaminergic innervation in the prefrontal cortex of the rat.
Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB., J. Comp. Neurol. 269(1), 1988
PMID: 3361004
Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters
Gatley SJ, Pan DF, Chen RY, Chaturvedi G, Ding YS., 1996
Wirkmechanismus von Methylphenidat
Krause KH, Dresel S, Krause J., 2001
Amphetamine induces depletion of dopamine and loss of dopamine uptake sites in caudate.
Wagner GC, Ricaurte GA, Johanson CE, Schuster CR, Seiden LS., Neurology 30(5), 1980
PMID: 6768005
Methylphenidate and pemoline do not cause depletion of rat brain monoamine markers similar to that observed with methamphetamine.
Zaczek R, Battaglia G, Contrera JF, Culp S, De Souza EB., Toxicol. Appl. Pharmacol. 100(2), 1989
PMID: 2551071
Methylphenidate and brain dopamine neurotoxicity.
Yuan J, McCann U, Ricaurte G., Brain Res. 767(1), 1997
PMID: 9365033
Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters.
Moll GH, Hause S, Ruther E, Rothenberger A, Huether G., J Child Adolesc Psychopharmacol 11(1), 2001
PMID: 11322741
Stimulants and the developing brain.
Andersen SL., Trends Pharmacol. Sci. 26(5), 2005
PMID: 15860370
Effects of chronic reserpine treatment on development of maturity of the putamen in fetal rabbits.
Tennyson VM, Budininkas-Schoenebeck M, Gershon P., Brain Res. Bull. 9(1-6), 1982
PMID: 7172040
Neurotransmitters as morphogens.
Lauder JM., Prog. Brain Res. 73(), 1988
PMID: 2901778
Effects of Enriched and of Restricted Rearing on Both Neurogenesis and Synaptogenesis in the Hippocampal Dentate Gyrus of Adult Gerbils (Meriones unguiculatus)
Keller A, Bagorda F, Hildebrandt K, Teuchert-Noodt G., 2000
Maternal care, hippocampal synaptogenesis and cognitive development in rats.
Liu D, Diorio J, Day JC, Francis DD, Meaney MJ., Nat. Neurosci. 3(8), 2000
PMID: 10903573

Grund T., 2005
Oral Methylphenidate During Prepuberty Prevents Pharmacologically-Induced (Preweaning) Suppressive Development of Dopamine Projections into Prefrontal Cortex and Amygdala
Grund T, Teuchert-Noodt G, Busche A, Neddens J, Moll GH, Dawirs RR., 2005
High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder.
Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM., Am J Psychiatry 156(8), 1999
PMID: 10450262
Association of attention-deficit disorder and the dopamine transporter gene.
Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL., Am. J. Hum. Genet. 56(4), 1995
PMID: 7717410
Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism.
Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M., Mol. Psychiatry 2(4), 1997
PMID: 9246671
Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes.
Castellanos FX, Tannock R., Nat. Rev. Neurosci. 3(8), 2002
PMID: 12154363
A genomewide scan for loci involved in attention-deficit/hyperactivity disorder.
Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL, Newbury DF, Crawford LR, Palmer CG, Woodward JA, Del'Homme M, Cantwell DP, Nelson SF, Monaco AP, Smalley SL., Am. J. Hum. Genet. 70(5), 2002
PMID: 11923911
Dopamine transporter density in patients with attention deficit hyperactivity disorder.
Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ., Lancet 354(9196), 1999
PMID: 10609822
Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder.
Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD., Eur. J. Nucl. Med. Mol. Imaging 30(2), 2002
PMID: 12552351
Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder.
Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW., Neuropsychopharmacology 27(5), 2002
PMID: 12431845
Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex.
Marsteller DA, Gerasimov MR, Schiffer WK, Geiger JM, Barnett CR, Schaich Borg J, Scott S, Ceccarelli J, Volkow ND, Molina PE, Alexoff DL, Dewey SL., Neuropsychopharmacology 27(2), 2002
PMID: 12093590
Sustained high release at rapid stimulation rates and reduced functional autoreceptors characterize prefrontal cortex dopamine terminals.
Hoffmann IS, Talmaciu RK, Ferro CP, Cubeddu LX., J. Pharmacol. Exp. Ther. 245(3), 1988
PMID: 3385641
Differential expression of autoreceptors in the ascending dopamine systems of the human brain.
Meador-Woodruff JH, Damask SP, Watson SJ Jr., Proc. Natl. Acad. Sci. U.S.A. 91(17), 1994
PMID: 7914704
Localization and quantification of the dopamine transporter: comparison of [3H]WIN 35,428 and [125I]RTI-55.
Coulter CL, Happe HK, Bergman DA, Murrin LC., Brain Res. 690(2), 1995
PMID: 8535839
Dopamine reuptake by norepinephrine neurons: exception or rule?
Carboni E, Silvagni A., Crit Rev Neurobiol 16(1-2), 2004
PMID: 15581407
Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain
Volkow ND, Wang GJ, Fowler JS, Logan J, Gerasimov M, Maynard L., 2001
Comparative effects of methylphenidate and thioridazine in hyperkinetic children. I. Clinical results.
Gittelman-Klein R, Klein DF, Katz S, Saraf K, Pollack E., Arch. Gen. Psychiatry 33(10), 1976
PMID: 971031
Combination of neuroleptic and stimulant treatment in attention deficit disorder with hyperactivity.
Weizman A, Weitz R, Szekely GA, Tyano S, Belmaker RH., J Am Acad Child Psychiatry 23(3), 1984
PMID: 6145738
Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study.
Levy F, Hay DA, McStephen M, Wood C, Waldman I., J Am Acad Child Adolesc Psychiatry 36(6), 1997
PMID: 9183127
Developmentally induced imbalance of dopaminergic fibre densities in limbic brain regions of gerbils ( Meriones unguiculatus).
Busche A, Polascheck D, Lesting J, Neddens J, Teuchert-Noodt G., J Neural Transm (Vienna) 111(4), 2004
PMID: 15057515
Connectivity of the rat amygdaloid complex
Pitkanen A., 2000
Involvement of mesocorticolimbic dopaminergic systems in emotional states.
Bertolucci-D'Angio M, Serrano A, Driscoll P, Scatton B., Prog. Brain Res. 85(), 1990
PMID: 2094907
Extinction of emotional learning: contribution of medial prefrontal cortex.
Morgan MA, Romanski LM, LeDoux JE., Neurosci. Lett. 163(1), 1993
PMID: 8295722
Animal models of attention-deficit hyperactivity disorder.
Davids E, Zhang K, Tarazi FI, Baldessarini RJ., Brain Res. Brain Res. Rev. 42(1), 2003
PMID: 12668288
Brain dopamine transporter in spontaneously hypertensive rats.
Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T., J. Nucl. Med. 38(3), 1997
PMID: 9074541
Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD.
Carey MP, Diewald LM, Esposito FJ, Pellicano MP, Gironi Carnevale UA, Sergeant JA, Papa M, Sadile AG., Behav. Brain Res. 94(1), 1998
PMID: 9708848
Psychiatric diagnoses of maltreated children: preliminary findings.
Famularo R, Kinscherff R, Fenton T., J Am Acad Child Adolesc Psychiatry 31(5), 1992
PMID: 1400118

Polascheck D., 2004
The postnatal maturation of dopamine innervation in the prefrontal cortex of gerbils (Meriones unguiculatus) is sensitive to an early single dose of methamphetamine. A quantitative immunocytochemical study
Dawirs RR, Teuchert-Noodt G, Czaniera R., 1994
The acetylcholine fiber density of the neocortex is altered by isolated rearing and early methamphetamine intoxication in rodents.
Lehmann K, Hundsdorfer B, Hartmann T, Teuchert-Noodt G., Exp. Neurol. 189(1), 2004
PMID: 15296843
Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder.
Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen P Jr, Sirvio J., Neurobiol Learn Mem 66(2), 1996
PMID: 8946412

Barkley RA., 1990
Kann Ritalin (Methylphenidat) die Schulleistungen von Schülern mit Aufmerksamkeits- und Hyperaktivitätsproblemen verbessern? – Ein Literaturüberblick auf der Basis US-amerikanischer Forschung
Walter J., 2001
Ritalin und Schulleistungen bei HKS: Befunde bei Langfrist- und Kombinationsbehandlungen
Walter J., 2001
Offer and demand: proliferation and survival of neurons in the dentate gyrus.
Lehmann K, Butz M, Teuchert-Noodt G., Eur. J. Neurosci. 21(12), 2005
PMID: 16026459
Dextroamphetamine: cognitive and behavioral effects in normal prepubertal boys.
Rapoport JL, Buchsbaum MS, Zahn TP, Weingartner H, Ludlow C, Mikkelsen EJ., Science 199(4328), 1978
PMID: 341313
Dextroamphetamine. Its cognitive and behavioral effects in normal and hyperactive boys and normal men.
Rapoport JL, Buchsbaum MS, Weingartner H, Zahn TP, Ludlow C, Mikkelsen EJ., Arch. Gen. Psychiatry 37(8), 1980
PMID: 7406657
Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study.
Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD., Proc. Natl. Acad. Sci. U.S.A. 95(24), 1998
PMID: 9826728
Effects of methylphenidate on spatial working memory and planning in healthy young adults.
Elliott R, Sahakian BJ, Matthews K, Bannerjea A, Rimmer J, Robbins TW., Psychopharmacology (Berl.) 131(2), 1997
PMID: 9201809
Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain.
Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW., J. Neurosci. 20(6), 2000
PMID: 10704519
Prediction of clinical response to methylphenidate in children with attention-deficit hyperactivity disorder.
Buitelaar JK, Van der Gaag RJ, Swaab-Barneveld H, Kuiper M., J Am Acad Child Adolesc Psychiatry 34(8), 1995
PMID: 7665441
Altered responsiveness to cocaine in rats exposed to methylphenidate during development.
Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr., Nat. Neurosci. 5(1), 2002
PMID: 11731802
Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood.
Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ., Biol. Psychiatry 54(12), 2003
PMID: 14675795
Pharmacotherapy of attention-deficit/hyperactivity disorder reduces risk for substance use disorder
Biederman J, Wilens T, Mick E, Spencer T, Faraone SV., 1999
Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons.
Brandon CL, Marinelli M, White FJ., Biol. Psychiatry 54(12), 2003
PMID: 14675797
Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate.
Kuczenski R, Segal DS., Psychopharmacology (Berl.) 147(1), 1999
PMID: 10591874
Comparison between intraperitoneal and oral methylphenidate administration: A microdialysis and locomotor activity study.
Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D, Molina PE, Dewey SL., J. Pharmacol. Exp. Ther. 295(1), 2000
PMID: 10991960
Age-associated changes in the densities of presynaptic monoamine transporters in different regions of the rat brain from early juvenile life to late adulthood.
Moll GH, Mehnert C, Wicker M, Bock N, Rothenberger A, Ruther E, Huether G., Brain Res. Dev. Brain Res. 119(2), 2000
PMID: 10675775
Serum and brain concentrations of methylphenidate: implications for use and abuse.
Swanson JM, Volkow ND., Neurosci Biobehav Rev 27(7), 2003
PMID: 14624806
Metabolism and disposition of methylphenidate-14C: studies in man and animals.
Faraj BA, Israili ZH, Perel JM, Jenkins ML, Holtzman SG, Cucinell SA, Dayton PG., J. Pharmacol. Exp. Ther. 191(3), 1974
PMID: 4473537
Relapse to drug-seeking: neural and molecular mechanisms.
Self DW, Nestler EJ., Drug Alcohol Depend 51(1-2), 1998
PMID: 9716929
Stimulant treatment over five years: adherence, effectiveness, and adverse effects.
Charach A, Ickowicz A, Schachar R., J Am Acad Child Adolesc Psychiatry 43(5), 2004
PMID: 15100562
Altered neural substrates of cognitive control in childhood ADHD: evidence from functional magnetic resonance imaging.
Vaidya CJ, Bunge SA, Dudukovic NM, Zalecki CA, Elliott GR, Gabrieli JD., Am J Psychiatry 162(9), 2005
PMID: 16135618

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 16403217
PubMed | Europe PMC

Suchen in

Google Scholar