A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit.

Mikolajczyk RT, Sagel U, Bornemann R, Krämer A, Kretzschmar M (2007)
Journal of Hospital Infection 65(2): 149-155.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Mikolajczyk, R. T.; Sagel, U; Bornemann, ReinhardUniBi; Krämer, AlexanderUniBi ; Kretzschmar, M
Abstract / Bemerkung
Multi-resistant bacteria are an increasing challenge for infection control in hospitals and the proportion of patients newly colonized with multi-resistant bacteria during their hospital stay can be used to assess the effectiveness of infection control measures. Current laboratory methods for estimating this require expensive additional tests. We propose an alternative statistical method to estimate the proportion of cases resulting from transmission in a hospital from the distribution of time intervals between subsequent cases. A prerequisite for the application of this method is the existence of records from regular screening of the patients during their hospital stay, usually performed in intensive care units (ICUs). We describe the method and present an example of its application using records of two multi-resistant pathogens collected in an ICU over a three-year period. The estimated proportion of cases resulting from transmission was 0.73 (95% CI: 0.56-0.90) for meticillin-resistant Staphylococcus aureus and 0.45 (95% CI 0.15-0.75) for imipenem-resistant Pseudomonas aeruginosa. The method proposed here can be used for retrospective evaluation of clinical records in order to evaluate the effectiveness of infection control measures in low endemicity settings.
Stichworte
nosocomial infection; hospital infection; multi-resistant bacteria; MRSA
Erscheinungsjahr
2007
Zeitschriftentitel
Journal of Hospital Infection
Band
65
Ausgabe
2
Seite(n)
149-155
ISSN
0195-6701
Page URI
https://pub.uni-bielefeld.de/record/1665866

Zitieren

Mikolajczyk RT, Sagel U, Bornemann R, Krämer A, Kretzschmar M. A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. Journal of Hospital Infection. 2007;65(2):149-155.
Mikolajczyk, R. T., Sagel, U., Bornemann, R., Krämer, A., & Kretzschmar, M. (2007). A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. Journal of Hospital Infection, 65(2), 149-155. doi:10.1016/j.jhin.2006.10.005
Mikolajczyk, R. T., Sagel, U., Bornemann, R., Krämer, A., and Kretzschmar, M. (2007). A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. Journal of Hospital Infection 65, 149-155.
Mikolajczyk, R.T., et al., 2007. A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. Journal of Hospital Infection, 65(2), p 149-155.
R.T. Mikolajczyk, et al., “A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit.”, Journal of Hospital Infection, vol. 65, 2007, pp. 149-155.
Mikolajczyk, R.T., Sagel, U., Bornemann, R., Krämer, A., Kretzschmar, M.: A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit. Journal of Hospital Infection. 65, 149-155 (2007).
Mikolajczyk, R. T., Sagel, U, Bornemann, Reinhard, Krämer, Alexander, and Kretzschmar, M. “A statistical method for estimating the proportion of cases resulting from cross-transmission of multi-resistant pathogens in an intensive care unit.”. Journal of Hospital Infection 65.2 (2007): 149-155.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Quantifying where human acquisition of antibiotic resistance occurs: a mathematical modelling study.
Knight GM, Costelloe C, Deeny SR, Moore LSP, Hopkins S, Johnson AP, Robotham JV, Holmes AH., BMC Med 16(1), 2018
PMID: 30134939
Detecting related cases of bloodstream infections using time-interval distribution modelling.
Charvat H, Ayzac L, Girard R, Gardes S, Ecochard R., J Hosp Infect 74(3), 2010
PMID: 19914738
Acquisition and spread of Acinetobacter baumannii and Stenotrophomonas maltophilia in intensive care patients.
Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C, Pennisi C, Agodi A., Int J Hyg Environ Health 212(3), 2009
PMID: 18771951
Mixture model to assess the extent of cross-transmission of multidrug-resistant pathogens in hospitals.
Mikolajczyk RT, Kauermann G, Sagel U, Kretzschmar M., Infect Control Hosp Epidemiol 30(8), 2009
PMID: 19583514
Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients.
Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C., Intensive Care Med 33(7), 2007
PMID: 17503016

17 References

Daten bereitgestellt von Europe PubMed Central.

Nosocomial infections in adult intensive-care units.
Vincent JL., Lancet 361(9374), 2003
PMID: 12814731
Methicillin-resistant Staphylococcus aureus in Europe, 1999-2002.
Tiemersma EW, Bronzwaer SL, Lyytikainen O, Degener JE, Schrijnemakers P, Bruinsma N, Monen J, Witte W, Grundman H; European Antimicrobial Resistance Surveillance System Participants., Emerging Infect. Dis. 10(9), 2004
PMID: 15498166
Effectiveness of a hospital-wide selective screening programme for methicillin-resistant Staphylococcus aureus (MRSA) carriers at hospital admission to prevent hospital-acquired MRSA infections.
Wernitz MH, Swidsinski S, Weist K, Sohr D, Witte W, Franke KP, Roloff D, Ruden H, Veit SK., Clin. Microbiol. Infect. 11(6), 2005
PMID: 15882195
Surveillance of nosocomial infections and recording of pathogens with specific resistances and multiresistances [In German]
Anonymous, Bundesgesundheitsbl – Gesundheitsforsch – Gesundheitsschutz 43(), 2000
Using mandatory data collection on multi-resistant bacteria for internal surveillance in a hospital
Sagel, Methods Infect Med 43(), 2004
How to assess the relative importance of different colonization routes of pathogens within hospital settings.
Pelupessy I, Bonten MJ, Diekmann O., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11943870
Staphylococcus aureus (including staphylococcal toxic shock)
Moreillon, 2005
Pseudomonas aeruginosa
Pier, 2005
How many infections are caused by patient-to-patient transmission in intensive care units?
Grundmann H, Barwolff S, Tami A, Behnke M, Schwab F, Geffers C, Halle E, Gobel UB, Schiller R, Jonas D, Klare I, Weist K, Witte W, Beck-Beilecke K, Schumacher M, Ruden H, Gastmeier P., Crit. Care Med. 33(5), 2005
PMID: 15891318
The analysis of hospital infection data using hidden Markov models.
Cooper B, Lipsitch M., Biostatistics 5(2), 2004
PMID: 15054027
Mathematical modelling: a tool for hospital infection control.
Grundmann H, Hellriegel B., Lancet Infect Dis 6(1), 2006
PMID: 16377533

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17174444
PubMed | Europe PMC

Suchen in

Google Scholar