Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.

Schenkluhn L, Hohnjec N, Niehaus K, Schmitz U, Colditz F (2010)
Journal of Proteomics 73(4): 753-768.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schenkluhn, Leif; Hohnjec, Natalija; Niehaus, KarstenUniBi; Schmitz, Udo; Colditz, Frank
Abstract / Bemerkung
Symbiosis- and pathogenesis-related early protein induction patterns in the model legume Medicago truncatula were analysed with two-dimensional differential gel electrophoresis. Two symbiotic soil microorganisms (Glomus intraradices, Sinorhizobium meliloti) were used in single infections and in combination with a secondary pathogenic infection by the oomycete Aphanomyces euteiches. Proteomic analyses performed 6 and 24h after inoculations led to identification of 87 differentially induced proteins which likely represent the M. truncatula root 'interactome'. A set of proteins involved in a primary antioxidant defense reaction was detected during all associations investigated. Symbiosis-related protein induction includes a typical factor of early symbiosis-specific signalling (CaM-2), two Ran-binding proteins of nucleocytoplasmic signalling, and a set of energy-related enzymes together with proteins involved in symbiosis-initiated C- and N-fixation. Pathogen-associated protein induction consists of mainly PR proteins, Kunitz-type proteinase inhibitors, a lectin, and proteins related to primary carbohydrate metabolism and phytoalexin synthesis. Absence of PR proteins and decreased pathogen-induced protein patterns during mixed symbiotic and pathogenic infections indicate bioprotective effects due to symbiotic co-infection. Several 14-3-3 proteins were found as predominant proteins during mixed infections. With respect to hormone-regulation, A. euteiches infection led to induction of ABA-related pathways, while auxin-related pathways are induced during symbiosis.
Erscheinungsjahr
2010
Zeitschriftentitel
Journal of Proteomics
Band
73
Ausgabe
4
Seite(n)
753-768
ISSN
1874-3919
Page URI
https://pub.uni-bielefeld.de/record/1665026

Zitieren

Schenkluhn L, Hohnjec N, Niehaus K, Schmitz U, Colditz F. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics. 2010;73(4):753-768.
Schenkluhn, L., Hohnjec, N., Niehaus, K., Schmitz, U., & Colditz, F. (2010). Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics, 73(4), 753-768. https://doi.org/10.1016/j.jprot.2009.10.009
Schenkluhn, Leif, Hohnjec, Natalija, Niehaus, Karsten, Schmitz, Udo, and Colditz, Frank. 2010. “Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.”. Journal of Proteomics 73 (4): 753-768.
Schenkluhn, L., Hohnjec, N., Niehaus, K., Schmitz, U., and Colditz, F. (2010). Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics 73, 753-768.
Schenkluhn, L., et al., 2010. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics, 73(4), p 753-768.
L. Schenkluhn, et al., “Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.”, Journal of Proteomics, vol. 73, 2010, pp. 753-768.
Schenkluhn, L., Hohnjec, N., Niehaus, K., Schmitz, U., Colditz, F.: Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome. Journal of Proteomics. 73, 753-768 (2010).
Schenkluhn, Leif, Hohnjec, Natalija, Niehaus, Karsten, Schmitz, Udo, and Colditz, Frank. “Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the Medicago truncatula root proteome.”. Journal of Proteomics 73.4 (2010): 753-768.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Quantitative Proteomics View on the Function of Qfhb1, a Major QTL for Fusarium Head Blight Resistance in Wheat.
Eldakak M, Das A, Zhuang Y, Rohila JS, Glover K, Yen Y., Pathogens 7(3), 2018
PMID: 29932155
Application of Proteomics Technologies in Oil Palm Research.
Lau BYC, Othman A, Ramli US., Protein J 37(6), 2018
PMID: 30367348
A Proteomic View on the Role of Legume Symbiotic Interactions.
Larrainzar E, Wienkoop S., Front Plant Sci 8(), 2017
PMID: 28769967
Legume proteomics: Progress, prospects, and challenges.
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N., Proteomics 16(2), 2016
PMID: 26563903
Influence of zygomycete-derived D'orenone on IAA signalling in Tricholoma-spruce ectomycorrhiza.
Wagner K, Krause K, David A, Kai M, Jung EM, Sammer D, Kniemeyer O, Boland W, Kothe E., Environ Microbiol 18(8), 2016
PMID: 26636983
In vitro flowering associated protein changes in Dendrocalamus hamiltonii.
Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y., Proteomics 15(7), 2015
PMID: 25475561
14-3-3 proteins in plant-pathogen interactions.
Lozano-Durán R, Robatzek S., Mol Plant Microbe Interact 28(5), 2015
PMID: 25584723
Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK., Front Plant Sci 6(), 2015
PMID: 26734026
Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.
Valadares RB, Perotto S, Santos EC, Lambais MR., Mycorrhiza 24(5), 2014
PMID: 24310930
Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection.
Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F., Plant Physiol 159(1), 2012
PMID: 22399646
Leveraging proteomics to understand plant-microbe interactions.
Jayaraman D, Forshey KL, Grimsrud PA, Ané JM., Front Plant Sci 3(), 2012
PMID: 22645586
Gel-based and gel-free quantitative proteomics approaches at a glance.
Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K., Int J Plant Genomics 2012(), 2012
PMID: 23213324
Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species.
Cangahuala-Inocente GC, Da Silva MF, Johnson JM, Manga A, van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E., Mycorrhiza 21(6), 2011
PMID: 21210159
Quantitative plant proteomics.
Bindschedler LV, Cramer R., Proteomics 11(4), 2011
PMID: 21246733

68 References

Daten bereitgestellt von Europe PubMed Central.

Four hundred-million-year-old vesicular arbuscular mycorrhizae.
Remy W, Taylor TN, Hass H, Kerp H., Proc. Natl. Acad. Sci. U.S.A. 91(25), 1994
PMID: 11607500
Evolution of root endosymbiosis with bacteria: How novel are nodules?
Markmann K, Parniske M., Trends Plant Sci. 14(2), 2009
PMID: 19167260
Rosid radiation and the rapid rise of angiosperm-dominated forests.
Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE., Proc. Natl. Acad. Sci. U.S.A. 106(10), 2009
PMID: 19223592
Nuclear calcium changes at the core of symbiosis signalling.
Oldroyd GE, Downie JA., Curr. Opin. Plant Biol. 9(4), 2006
PMID: 16713329
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.
Akiyama K, Matsuzaki K, Hayashi H., Nature 435(7043), 2005
PMID: 15944706
Innate immunity in plants and animals: striking similarities and obvious differences.
Nurnberger T, Brunner F, Kemmerling B, Piater L., Immunol. Rev. 198(), 2004
PMID: 15199967
Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi.
Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P., Plant Physiol. 149(3), 2009
PMID: 19151131
Cytoskeleton and cell wall function in penetration resistance.
Hardham AR, Jones DA, Takemoto D., Curr. Opin. Plant Biol. 10(4), 2007
PMID: 17627866
Resistance gene-dependent plant defense responses.
Hammond-Kosack KE, Jones JD., Plant Cell 8(10), 1996
PMID: 8914325
The Lipopolysaccharide of Sinorhizobium meliloti suppresses defense-associated gene expression in cell cultures of the host plant Medicago truncatula
Tellström, Plant Physiol 143(), 2007
Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi.
Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S., New Phytol. 133(1), 1996
PMID: IND20632246
Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices
Salzer, Planta 208(), 1999
Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula
Harrison, Mol Plant Microbe Interact 6(), 1993
Aphanomyces root rot
Hagedorn, 1989
Pathogenicity of Aphanomyces spp. from different leguminous crops in Sweden
Levenfors, Eur J Plant Path 109(), 2003
Root rot disease of legumes caused by Aphanomyces euteiches.
Gaulin E, Jacquet C, Bottin A, Dumas B., Mol. Plant Pathol. 8(5), 2007
PMID: 20507520
Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches.
Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F., Plant Mol. Biol. 55(1), 2004
PMID: 15604668
Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations.
Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386364
Internal protein sequencing of SDS-PAGE-separated proteins: optimization of an in gel digest protocol
Williams, 1997
Transcriptional profiling of Medicago truncatula roots after infection wtih Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction.
Nyamsuren O, Colditz F, Rosendahl S, Tamasloukht MB, Bekel T, Meyer F, Kuester H, Franken P, Krajinski F., Physiol. Mol. Plant Pathol. 63(1), 2003
PMID: IND43743021
Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization
Abad, Plant Sci 118(), 1996
Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway.
Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH., Plant J. 37(2), 2004
PMID: 14690503
Significance of inducible defense-related proteins in infected plants.
van Loon LC, Rep M, Pieterse CM., Annu Rev Phytopathol 44(), 2006
PMID: 16602946
The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins.
Wang X, Zafian P, Choudhary M, Lawton M., Proc. Natl. Acad. Sci. U.S.A. 93(6), 1996
PMID: 8637920
Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier.
Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H., J. Mol. Biol. 325(1), 2003
PMID: 12473456
Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor.
Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA., Mol. Cell 17(2), 2005
PMID: 15664187
Cytokinin-induced structural adaptability of a Lupinus luteus PR-10 protein.
Fernandes H, Bujacz A, Bujacz G, Jelen F, Jasinski M, Kachlicki P, Otlewski J, Sikorski MM, Jaskolski M., FEBS J. 276(6), 2009
PMID: 19220853
Regulation of protease inhibitors and plant defense
Koiwa, Trends Plant Sci 2(), 1997
A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B.
Tian M, Huitema E, Da Cunha L, Torto-Alalibo T, Kamoun S., J. Biol. Chem. 279(25), 2004
PMID: 15096512
Protease inhibitors: genes for improving defenses against insects and pathogens
Ryan, Annu Rev Phytopathol 28(), 1990
Kunitz-type proteinase inhibitors from intact and Phytophthora-infected potato tubers.
Valueva TA, Revina TA, Kladnitskaya GV, Mosolov VV., FEBS Lett. 426(1), 1998
PMID: 9598993
A seedling specific vegetative lectin gene is related to development in Cicer arietinum.
Esteban R, Dopico B, Munoz FJ, Romo S, Labrador E., Physiol Plant 114(4), 2002
PMID: 11975737
Root lectin as a determinant of host specificity in the Rhizobium-legume symbiosis
Diaz, Nature 338(), 1989
Role of phytoalexin medicarpin in 3 leaf spot diseases of Alfalfa
Higgins, Physiol Plant Pathol 2(), 1972
Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin.
Takezawa D, Ramachandiran S, Paranjape V, Poovaiah BW, Poovaiah BW., J. Biol. Chem. 271(14), 1996
PMID: 8626500
Nucleocytoplasmic shuttling of signal transducers.
Xu L, Massague J., Nat. Rev. Mol. Cell Biol. 5(3), 2004
PMID: 14991001
Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.
Lee Y, Lee HS, Lee JS, Kim SK, Kim SH., J. Exp. Bot. 59(12), 2008
PMID: 18678754
Soybean root nodule acid phosphatase.
Penheiter AR, Duff SM, Sarath G., Plant Physiol. 114(2), 1997
PMID: 9193092
TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X.
Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S., Mol. Plant Microbe Interact. 16(2), 2003
PMID: 12575747
Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana.
Seo M, Akaba S, Oritani T, Delarue M, Bellini C, Caboche M, Koshiba T., Plant Physiol. 116(2), 1998
PMID: 9489015
Plant root growth, architecture and function
Hodge, Plant Soil 321(), 2009
Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti.
van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U., Plant Physiol. 144(2), 2007
PMID: 17468210
Comparative proteomic studies of root-microbe interactions.
Mathesius U., J Proteomics 72(3), 2008
PMID: 19152841
The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts
Campanella, J Plant Growth Regul 27(), 2008
A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach.
Schoonheim PJ, Veiga H, Pereira Dda C, Friso G, van Wijk KJ, de Boer AH., Plant Physiol. 143(2), 2006
PMID: 17172288
Local induction of a mycorrhiza-specific class III chitinase gene in cortical cells of Medicago truncatula containing developing or mature arbuscules
Bonanomi, Plant Biol 3(), 2001
Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti.
Cook D, Dreyer D, Bonnet D, Howell M, Nony E, VandenBosch K., Plant Cell 7(1), 1995
PMID: 7696879

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19895911
PubMed | Europe PMC

Suchen in

Google Scholar