Induction and Structure Theorems for Orthogonal Representations of Finite Groups

Dress A (1975)
Annals of Mathematics 102(2): 291-325.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The equivariant Witt ring GW(π, R) of a finite group π over a Dedekind domain R is studied. It is shown that--modulo the prime 2--GW(π, Z) equals the character ring of real representations of π and GW(π, R) equals GW(π, Z) ⊗ W(R). From this, induction theorems a la E. Artin and R. Brauer are derived for GW(-, R) and it is shown how these can be applied towards the computation of L-groups.
Erscheinungsjahr
1975
Zeitschriftentitel
Annals of Mathematics
Band
102
Ausgabe
2
Seite(n)
291-325
ISSN
0003-486X
Page URI
https://pub.uni-bielefeld.de/record/1664397

Zitieren

Dress A. Induction and Structure Theorems for Orthogonal Representations of Finite Groups. Annals of Mathematics. 1975;102(2):291-325.
Dress, A. (1975). Induction and Structure Theorems for Orthogonal Representations of Finite Groups. Annals of Mathematics, 102(2), 291-325. https://doi.org/10.2307/1971033
Dress, A. (1975). Induction and Structure Theorems for Orthogonal Representations of Finite Groups. Annals of Mathematics 102, 291-325.
Dress, A., 1975. Induction and Structure Theorems for Orthogonal Representations of Finite Groups. Annals of Mathematics, 102(2), p 291-325.
A. Dress, “Induction and Structure Theorems for Orthogonal Representations of Finite Groups”, Annals of Mathematics, vol. 102, 1975, pp. 291-325.
Dress, A.: Induction and Structure Theorems for Orthogonal Representations of Finite Groups. Annals of Mathematics. 102, 291-325 (1975).
Dress, Andreas. “Induction and Structure Theorems for Orthogonal Representations of Finite Groups”. Annals of Mathematics 102.2 (1975): 291-325.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar