On some combinatorial properties of algebraic matroids

Dress A, Lovász L (1987)
Combinatorica volume 7(1): 39-48.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dress, AndreasUniBi; Lovász, László
Abstract / Bemerkung
It was proved implicitly by Ingleton and Main and explicitly by Lindström that if three lines in the algebraic matroid consisting of all elements of an algebraically closed field are not coplanar, but any two of them are, then they pass through one point. This theorem is extended to a more general result about the intersection of subspaces in full algebraic matroids. This result is used to show that the minimax theorem for matroid matching, proved for linear matroids by Lovász, remains valid for algebraic matroids.
Erscheinungsjahr
1987
Zeitschriftentitel
Combinatorica volume
Band
7
Ausgabe
1
Seite(n)
39-48
ISSN
0209-9683
Page URI
https://pub.uni-bielefeld.de/record/1655029

Zitieren

Dress A, Lovász L. On some combinatorial properties of algebraic matroids. Combinatorica volume. 1987;7(1):39-48.
Dress, A., & Lovász, L. (1987). On some combinatorial properties of algebraic matroids. Combinatorica volume, 7(1), 39-48. https://doi.org/10.1007/BF02579199
Dress, A., and Lovász, L. (1987). On some combinatorial properties of algebraic matroids. Combinatorica volume 7, 39-48.
Dress, A., & Lovász, L., 1987. On some combinatorial properties of algebraic matroids. Combinatorica volume, 7(1), p 39-48.
A. Dress and L. Lovász, “On some combinatorial properties of algebraic matroids”, Combinatorica volume, vol. 7, 1987, pp. 39-48.
Dress, A., Lovász, L.: On some combinatorial properties of algebraic matroids. Combinatorica volume. 7, 39-48 (1987).
Dress, Andreas, and Lovász, László. “On some combinatorial properties of algebraic matroids”. Combinatorica volume 7.1 (1987): 39-48.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar