Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case

Abels H (1991)
Israel Journal of Mathematics 76(1-2): 113-128.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
It is proved that the finiteness length of GAMMA = SL(n)(F(q)[t]) is n - 2 if n greater-than-or-equal-to 2 and q greater-than-or-equal-to 2n-2. The proof consists in studying the homotopy type of a certain GAMMA-invariant filtration of an appropriate Bruhat-Tits building on which GAMMA acts.
Erscheinungsjahr
Zeitschriftentitel
Israel Journal of Mathematics
Band
76
Ausgabe
1-2
Seite(n)
113-128
ISSN
PUB-ID

Zitieren

Abels H. Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case. Israel Journal of Mathematics. 1991;76(1-2):113-128.
Abels, H. (1991). Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case. Israel Journal of Mathematics, 76(1-2), 113-128. doi:10.1007/BF02782847
Abels, H. (1991). Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case. Israel Journal of Mathematics 76, 113-128.
Abels, H., 1991. Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case. Israel Journal of Mathematics, 76(1-2), p 113-128.
H. Abels, “Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case”, Israel Journal of Mathematics, vol. 76, 1991, pp. 113-128.
Abels, H.: Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case. Israel Journal of Mathematics. 76, 113-128 (1991).
Abels, Herbert. “Finiteness Properties of Certain Arithmetic Groups in the Function-Field Case”. Israel Journal of Mathematics 76.1-2 (1991): 113-128.