A combinatorial approach to p-adic geometry

Dress A, Terhalle W (1993)
Geometriae Dedicata 46(2): 127-148.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dress, AndreasUniBi; Terhalle, Werner
Abstract / Bemerkung
An important tool in p-adic geometry is the process of p-adic completion. It is shown that this process can be performed on the level of valuated matroids, that is, certain structures which appear to capture much of the essence of p-adic geometry in a coordinate-free, combinatorial manner.
Erscheinungsjahr
1993
Zeitschriftentitel
Geometriae Dedicata
Band
46
Ausgabe
2
Seite(n)
127-148
ISSN
0046-5755
Page URI
https://pub.uni-bielefeld.de/record/1645870

Zitieren

Dress A, Terhalle W. A combinatorial approach to p-adic geometry. Geometriae Dedicata. 1993;46(2):127-148.
Dress, A., & Terhalle, W. (1993). A combinatorial approach to p-adic geometry. Geometriae Dedicata, 46(2), 127-148. https://doi.org/10.1007/BF01264912
Dress, Andreas, and Terhalle, Werner. 1993. “A combinatorial approach to p-adic geometry”. Geometriae Dedicata 46 (2): 127-148.
Dress, A., and Terhalle, W. (1993). A combinatorial approach to p-adic geometry. Geometriae Dedicata 46, 127-148.
Dress, A., & Terhalle, W., 1993. A combinatorial approach to p-adic geometry. Geometriae Dedicata, 46(2), p 127-148.
A. Dress and W. Terhalle, “A combinatorial approach to p-adic geometry”, Geometriae Dedicata, vol. 46, 1993, pp. 127-148.
Dress, A., Terhalle, W.: A combinatorial approach to p-adic geometry. Geometriae Dedicata. 46, 127-148 (1993).
Dress, Andreas, and Terhalle, Werner. “A combinatorial approach to p-adic geometry”. Geometriae Dedicata 46.2 (1993): 127-148.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar