THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY

BODE W, REINEMER P, HUBER R, KLEINE T, SCHNIERER S, Tschesche H (1994)
EMBO JOURNAL 13(6): 1263-1269.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Matrix metalloproteinases are a family of zinc endopeptidases involved in tissue remodelling. They have been implicated in various disease processes including tumour invasion and joint destruction. These enzymes consist of several domains, which are responsible for latency, catalysis and substrate recognition. Human neutrophil collagenase (PMNL-CL, MMP-8) represents one of the two 'interstitial' collagenases that cleave triple helical collagens types I, II and III. Its 163 residue catalytic domain (Met80 to Gly242) has been expressed in Escherichia coli and crystallized as a non-covalent complex with the inhibitor Pro-Leu-Gly-hydroxylamine. The 2.0 angstrom crystal structure reveals a spherical molecule with a shallow active-site cleft separating a smaller C-terminal subdomain from a bigger N-terminal domain, composed of a rive-stranded beta-sheet, two alpha-helices, and bridging loops. The inhibitor mimics the unprimed (P1-P3) residues of a substrate; primed (P1'-P3') peptide substrate residues should bind in an extended conformation, with the bulky P1' side-chain fitting into the deep hydrophobic S1' subsite. Modelling experiments with collagen show that the scissile strand of triple-helical collagen must be freed to fit the subsites. The catalytic zinc ion is situated at the bottom of the active-site cleft and is penta-coordinated by three histidines and by both hydroxamic acid oxygens of the inhibitor. In addition to the catalytic zinc, the catalytic domain harbours a second, non-exchangeable zinc ion and two calcium ions, which are packed against the top of the beta-sheet and presumably function to stabilize the catalytic domain. The polypeptide folding and in particular the zinc environment of the collagenase catalytic domain bear a close resemblance to the astacins and the snake venom metalloproteinases.
Erscheinungsjahr
Zeitschriftentitel
EMBO JOURNAL
Band
13
Ausgabe
6
Seite(n)
1263-1269
ISSN
PUB-ID

Zitieren

BODE W, REINEMER P, HUBER R, KLEINE T, SCHNIERER S, Tschesche H. THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY. EMBO JOURNAL. 1994;13(6):1263-1269.
BODE, W., REINEMER, P., HUBER, R., KLEINE, T., SCHNIERER, S., & Tschesche, H. (1994). THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY. EMBO JOURNAL, 13(6), 1263-1269.
BODE, W., REINEMER, P., HUBER, R., KLEINE, T., SCHNIERER, S., and Tschesche, H. (1994). THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY. EMBO JOURNAL 13, 1263-1269.
BODE, W., et al., 1994. THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY. EMBO JOURNAL, 13(6), p 1263-1269.
W. BODE, et al., “THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY”, EMBO JOURNAL, vol. 13, 1994, pp. 1263-1269.
BODE, W., REINEMER, P., HUBER, R., KLEINE, T., SCHNIERER, S., Tschesche, H.: THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY. EMBO JOURNAL. 13, 1263-1269 (1994).
BODE, W, REINEMER, P, HUBER, R, KLEINE, T, SCHNIERER, S, and Tschesche, Harald. “THE X-RAY CRYSTAL-STRUCTURE OF THE CATALYTIC DOMAIN OF HUMAN NEUTROPHIL COLLAGENASE INHIBITED BY A SUBSTRATE-ANALOG REVEALS THE ESSENTIALS FOR CATALYSIS AND SPECIFICITY”. EMBO JOURNAL 13.6 (1994): 1263-1269.

145 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

High throughput protease profiling comprehensively defines active site specificity for thrombin and ADAMTS13.
Kretz CA, Tomberg K, Van Esbroeck A, Yee A, Ginsburg D., Sci Rep 8(1), 2018
PMID: 29434246
A summary for molecular regulations of miRNAs in breast cancer.
Yahya SM, Elsayed GH., Clin Biochem 48(6), 2015
PMID: 25541018
Matrix metalloproteinase interactions with collagen and elastin.
Van Doren SR., Matrix Biol 44-46(), 2015
PMID: 25599938
Transient collagen triple helix binding to a key metalloproteinase in invasion and development.
Zhao Y, Marcink TC, Sanganna Gari RR, Marsh BP, King GM, Stawikowska R, Fields GB, Van Doren SR., Structure 23(2), 2015
PMID: 25651059
MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2.
Yang F, Wang W, Zhou C, Xi W, Yuan L, Chen X, Li Y, Yang A, Zhang J, Wang T., Tumour Biol 36(5), 2015
PMID: 25731730
MicroRNA and MET in lung cancer.
Brighenti M., Ann Transl Med 3(5), 2015
PMID: 25992367
MiR-301a promotes cell proliferation by directly targeting TIMP2 in multiple myeloma.
Liang B, Yin JJ, Zhan XR., Int J Clin Exp Pathol 8(8), 2015
PMID: 26464662
Adenoviral delivery of truncated MMP-8 fused with the hepatocyte growth factor mutant 1K1 ameliorates liver cirrhosis and promotes hepatocyte proliferation.
Liu J, Li J, Fu W, Tang J, Feng X, Chen J, Liang Y, Jin R, Xie A, Cai X., Drug Des Devel Ther 9(), 2015
PMID: 26527860
Architecture and function of metallopeptidase catalytic domains.
Cerdà-Costa N, Gomis-Rüth FX., Protein Sci 23(2), 2014
PMID: 24596965
LFG-500 inhibits the invasion of cancer cells via down-regulation of PI3K/AKT/NF-κB signaling pathway.
Li C, Li F, Zhao K, Yao J, Cheng Y, Zhao L, Li Z, Lu N, Guo Q., PLoS One 9(3), 2014
PMID: 24618693
Human protein kinase CK2 phosphorylates matrix metalloproteinase 2 and inhibits its activity.
Filipiak K, Kubiński K, Hellman U, Ramos A, de Pascual-Teresa B., Chembiochem 15(13), 2014
PMID: 25044410
Matrix metalloproteases and PAR1 activation.
Austin KM, Covic L, Kuliopulos A., Blood 121(3), 2013
PMID: 23086754
Unraveling hidden regulatory sites in structurally homologous metalloproteases.
Udi Y, Fragai M, Grossman M, Mitternacht S, Arad-Yellin R, Calderone V, Melikian M, Toccafondi M, Berezovsky IN, Luchinat C, Sagi I., J Mol Biol 425(13), 2013
PMID: 23583775
miRNAs in breast cancer tumorigenesis (Review).
Zhang ZJ, Ma SL., Oncol Rep 27(4), 2012
PMID: 22200848
miR221/222 in cancer: their role in tumor progression and response to therapy.
Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G., Curr Mol Med 12(1), 2012
PMID: 22082479
Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1.
Manka SW, Carafoli F, Visse R, Bihan D, Raynal N, Farndale RW, Murphy G, Enghild JJ, Hohenester E, Nagase H., Proc Natl Acad Sci U S A 109(31), 2012
PMID: 22761315
Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor protein-derived inhibitor.
Hashimoto H, Takeuchi T, Komatsu K, Miyazaki K, Sato M, Higashi S., J Biol Chem 286(38), 2011
PMID: 21813640
A functional calcium-binding site in the metalloprotease domain of ADAMTS13.
Gardner MD, Chion CK, de Groot R, Shah A, Crawley JT, Lane DA., Blood 113(5), 2009
PMID: 19047683
Catalytic domain architecture of metzincin metalloproteases.
Gomis-Rüth FX., J Biol Chem 284(23), 2009
PMID: 19201757
Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1).
Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti N, Svergun DI., J Biol Chem 284(19), 2009
PMID: 19282283
miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation.
Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, Gasparini P, Gonelli A, Costinean S, Acunzo M, Condorelli G, Croce CM., Cancer Cell 16(6), 2009
PMID: 19962668
Novel MMP-9 substrates in cancer cells revealed by a label-free quantitative proteomics approach.
Xu D, Suenaga N, Edelmann MJ, Fridman R, Muschel RJ, Kessler BM., Mol Cell Proteomics 7(11), 2008
PMID: 18596065
Regulation of mRNAs encoding MMP-9 and MMP-2, and their inhibitors TIMP-1 and TIMP-2 by androgens in the rat ventral prostate.
Limaye AM, Desai KV, Chavalmane AK, Kondaiah P., Mol Cell Endocrinol 294(1-2), 2008
PMID: 18675881
Matrix metalloproteinases in inflammatory bowel disease: boon or a bane?
Ravi A, Garg P, Sitaraman SV., Inflamm Bowel Dis 13(1), 2007
PMID: 17206645
Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs.
Verma RP, Hansch C., Bioorg Med Chem 15(6), 2007
PMID: 17275314
The design of inhibitors for medicinally relevant metalloproteins.
Jacobsen FE, Lewis JA, Cohen SM., ChemMedChem 2(2), 2007
PMID: 17163561
The role of matrix metalloproteinases in the oral environment.
Hannas AR, Pereira JC, Granjeiro JM, Tjäderhane L., Acta Odontol Scand 65(1), 2007
PMID: 17354089
Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity.
Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Pourmotabbed T, Bode W, Goettig P., J Mol Biol 371(4), 2007
PMID: 17599356
Crystal structures of human ADAMTS-1 reveal a conserved catalytic domain and a disintegrin-like domain with a fold homologous to cysteine-rich domains.
Gerhardt S, Hassall G, Hawtin P, McCall E, Flavell L, Minshull C, Hargreaves D, Ting A, Pauptit RA, Parker AE, Abbott WM., J Mol Biol 373(4), 2007
PMID: 17897672
Snake venom metalloproteases--structure and function of catalytic and disintegrin domains.
Ramos OH, Selistre-de-Araujo HS., Comp Biochem Physiol C Toxicol Pharmacol 142(3-4), 2006
PMID: 16434235
Matrix metalloproteinases and cellular motility in development and disease.
VanSaun MN, Matrisian LM., Birth Defects Res C Embryo Today 78(1), 2006
PMID: 16622849
Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP.
Itoh Y, Ito N, Nagase H, Evans RD, Bird SA, Seiki M., Mol Biol Cell 17(12), 2006
PMID: 17050733
Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs.
Cuniasse P, Devel L, Makaritis A, Beau F, Georgiadis D, Matziari M, Yiotakis A, Dive V., Biochimie 87(3-4), 2005
PMID: 15781327
Design, modelling, synthesis and biological evaluation of peptidomimetic phosphinates as inhibitors of matrix metalloproteinases MMP-2 and MMP-8.
Bianchini G, Aschi M, Cavicchio G, Crucianelli M, Preziuso S, Gallina C, Nastari A, Gavuzzo E, Mazza F., Bioorg Med Chem 13(15), 2005
PMID: 15935680
Crystal structure of the catalytic domain of MMP-16/MT3-MMP: characterization of MT-MMP specific features.
Lang R, Braun M, Sounni NE, Noel A, Frankenne F, Foidart JM, Bode W, Maskos K., J Mol Biol 336(1), 2004
PMID: 14741217
Human meprin alpha and beta homo-oligomers: cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors.
Kruse MN, Becker C, Lottaz D, Köhler D, Yiallouros I, Krell HW, Sterchi EE, Stöcker W., Biochem J 378(pt 2), 2004
PMID: 14594449
A practical approach to docking of zinc metalloproteinase inhibitors.
Hu X, Balaz S, Shelver WH., J Mol Graph Model 22(4), 2004
PMID: 15177081
Crystal structures of novel non-peptidic, non-zinc chelating inhibitors bound to MMP-12.
Morales R, Perrier S, Florent JM, Beltra J, Dufour S, De Mendez I, Manceau P, Tertre A, Moreau F, Compere D, Dublanchet AC, O'Gara M., J Mol Biol 341(4), 2004
PMID: 15289103
Adenovirus-mediated overexpression of tissue inhibitor of metalloproteinases-1 in the liver: efficient protection against T-cell lymphoma and colon carcinoma metastasis.
Elezkurtaj S, Kopitz C, Baker AH, Perez-Cantó A, Arlt MJ, Khokha R, Gansbacher B, Anton M, Brand K, Krüger A., J Gene Med 6(11), 2004
PMID: 15390257
Proteolytic host cell enzymes in gingival crevice fluid.
Uitto VJ, Overall CM, McCulloch C., Periodontol 2000 31(), 2003
PMID: 12656997
Structural aspects of the metzincin clan of metalloendopeptidases.
Gomis-Rüth FX., Mol Biotechnol 24(2), 2003
PMID: 12746556
Structure and evolutionary aspects of matrix metalloproteinases: a brief overview.
Das S, Mandal M, Chakraborti T, Mandal A, Chakraborti S., Mol Cell Biochem 253(1-2), 2003
PMID: 14619953
Matrix metalloproteinases and collagen catabolism.
Lauer-Fields JL, Juska D, Fields GB., Biopolymers 66(1), 2002
PMID: 12228918
Computational study of the catalytic domain of human neutrophil collagenase. specific role of the S3 and S'3 subsites in the interaction with a phosphonate inhibitor.
Aschi M, Roccatano D, Di Nola A, Gallina C, Gavuzzo E, Pochetti G, Pieper M, Tschesche H, Mazza F., J Comput Aided Mol Des 16(3), 2002
PMID: 12363219
Staurosporine enhances the expression of tissue inhibitor of metalloproteinase-1 in human prostate cancer cells.
Tachibana K, Shimizu T, Tonami K, Takeda K., Biochem Biophys Res Commun 295(2), 2002
PMID: 12150976
Triple-helical peptide analysis of collagenolytic protease activity.
Lauer-Fields JL, Fields GB., Biol Chem 383(7-8), 2002
PMID: 12437092
Tetrahydroisoquinoline-3-carboxylate based matrix-metalloproteinase inhibitors: design, synthesis and structure-activity relationship.
Matter H, Schudok M, Schwab W, Thorwart W, Barbier D, Billen G, Haase B, Neises B, Weithmann K, Wollmann T., Bioorg Med Chem 10(11), 2002
PMID: 12213468
Matrix metalloproteinase-21, the human orthologue for XMMP, is expressed during fetal development and in cancer.
Ahokas K, Lohi J, Lohi H, Elomaa O, Karjalainen-Lindsberg ML, Kere J, Saarialho-Kere U., Gene 301(1-2), 2002
PMID: 12490321
The role of exon 5 in fibroblast collagenase (MMP-1) substrate specificity and inhibitor selectivity.
Knäuper V, Patterson ML, Gomis-Rüth FX, Smith B, Lyons A, Docherty AJ, Murphy G., Eur J Biochem 268(6), 2001
PMID: 11248710
Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors.
Grams F, Brandstetter H, D'Alò S, Geppert D, Krell HW, Leinert H, Livi V, Menta E, Oliva A, Zimmermann G, Gram F, Brandstetter H, D'Alò S, Geppert D, Krell HW, Leinert H, Livi VMenta E, Oliva A, Zimmermann G., Biol Chem 382(8), 2001
PMID: 11592410
Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure.
Lang R, Kocourek A, Braun M, Tschesche H, Huber R, Bode W, Maskos K., J Mol Biol 312(4), 2001
PMID: 11575928
Design and synthesis of carboxylate inhibitors for matrix metalloproteinases.
Fujisawa T, Katakura S, Odake S, Morita Y, Yasuda J, Yasumatsu I, Morikawa T., Chem Pharm Bull (Tokyo) 49(10), 2001
PMID: 11605653
Human membrane type-2 matrix metalloproteinase is defective in cell-associated activation of progelatinase A.
Miyamori H, Takino T, Seiki M, Sato H., Biochem Biophys Res Commun 267(3), 2000
PMID: 10673371
Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases.
Ottl J, Gabriel D, Murphy G, Knäuper V, Tominaga Y, Nagase H, Kröger M, Tschesche H, Bode W, Moroder L., Chem Biol 7(2), 2000
PMID: 10662694
A rationalization of the acidic pH dependence for stromelysin-1 (Matrix metalloproteinase-3) catalysis and inhibition.
Johnson LL, Pavlovsky AG, Johnson AR, Janowicz JA, Man CF, Ortwine DF, Purchase CF, White AD, Hupe DJ., J Biol Chem 275(15), 2000
PMID: 10753905
Expression of human membrane type 1 matrix metalloproteinase in Pichia pastoris.
Roderfeld M, Büttner FH, Bartnik E, Tschesche H., Protein Expr Purif 19(3), 2000
PMID: 10910727
High-resolution solution structure of the catalytic fragment of human collagenase-3 (MMP-13) complexed with a hydroxamic acid inhibitor.
Moy FJ, Chanda PK, Chen JM, Cosmi S, Edris W, Levin JI, Powers R., J Mol Biol 302(3), 2000
PMID: 10986126
Gelatinolytic activity of matrix metalloproteinase-2 and -9 in oesophageal carcinoma; a study using in situ zymography.
Koyama H, Iwata H, Kuwabara Y, Iwase H, Kobayashi S, Fujii Y., Eur J Cancer 36(16), 2000
PMID: 11044656
Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3.
Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC., Br J Cancer 79(9-10), 1999
PMID: 10188875
Identification of metal ligands in the Clostridium histolyticum ColH collagenase.
Jung CM, Matsushita O, Katayama S, Minami J, Sakurai J, Okabe A., J Bacteriol 181(9), 1999
PMID: 10217773
Insights into MMP-TIMP interactions.
Bode W, Fernandez-Catalan C, Grams F, Gomis-Rüth FX, Nagase H, Tschesche H, Maskos K., Ann N Y Acad Sci 878(), 1999
PMID: 10415721
Structure of recombinant mouse collagenase-3 (MMP-13).
Botos I, Meyer E, Swanson SM, Lemaître V, Eeckhout Y, Meyer EF., J Mol Biol 292(4), 1999
PMID: 10525409
Matrix metalloproteases: variations on a theme.
Borkakoti N., Prog Biophys Mol Biol 70(1), 1998
PMID: 9785958
Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data.
Brandstetter H, Engh RA, Von Roedern EG, Moroder L, Huber R, Bode W, Grams F., Protein Sci 7(6), 1998
PMID: 9655333
Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer.
Murray GI, Duncan ME, O'Neil P, McKay JA, Melvin WT, Fothergill JE., J Pathol 185(3), 1998
PMID: 9771478
Roles of the matrix metalloproteinases in mammary gland development and cancer.
Benaud C, Dickson RB, Thompson EW., Breast Cancer Res Treat 50(2), 1998
PMID: 9822215
The crystal structure of the Leishmania major surface proteinase leishmanolysin (gp63).
Schlagenhauf E, Etges R, Metcalf P., Structure 6(8), 1998
PMID: 9739094
Analysis of zinc binding sites in protein crystal structures.
Alberts IL, Nadassy K, Wodak SJ., Protein Sci 7(8), 1998
PMID: 10082367
Structural characterizations of nonpeptidic thiadiazole inhibitors of matrix metalloproteinases reveal the basis for stromelysin selectivity.
Finzel BC, Baldwin ET, Bryant GL, Hess GF, Wilks JW, Trepod CM, Mott JE, Marshall VP, Petzold GL, Poorman RA, O'Sullivan TJ, Schostarez HJ, Mitchell MA., Protein Sci 7(10), 1998
PMID: 9792098
The recombinant catalytic domain of mouse collagenase-3 depolymerizes type I collagen by cleaving its aminotelopeptides.
Lemaître V, Jungbluth A, Eeckhout Y., Biochem Biophys Res Commun 230(1), 1997
PMID: 9020046
Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo.
Lewis EJ, Bishop J, Bottomley KM, Bradshaw D, Brewster M, Broadhurst MJ, Brown PA, Budd JM, Elliott L, Greenham AK, Johnson WH, Nixon JS, Rose F, Sutton B, Wilson K., Br J Pharmacol 121(3), 1997
PMID: 9179398
Assignments, secondary structure and dynamics of the inhibitor-free catalytic fragment of human fibroblast collagenase.
Moy FJ, Pisano MR, Chanda PK, Urbano C, Killar LM, Sung ML, Powers R., J Biomol NMR 10(1), 1997
PMID: 9335112
Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding.
Huizinga EG, Martijn van der Plas R, Kroon J, Sixma JJ, Gros P., Structure 5(9), 1997
PMID: 9331419
Activation of human neutrophil procollagenase by stromelysin 2.
Knäuper V, Murphy G, Tschesche H., Eur J Biochem 235(1-2), 1996
PMID: 8631328
Comparison of the structure of human recombinant short form stromelysin by multidimensional heteronuclear NMR and X-ray crystallography.
Gooley PR, O'Connell JF, Marcy AI, Cuca GC, Axel MG, Caldwell CG, Hagmann WK, Becker JW., J Biomol NMR 7(1), 1996
PMID: 8720828
Collagenase: a key enzyme in collagen turnover.
Shingleton WD, Hodges DJ, Brick P, Cawston TE., Biochem Cell Biol 74(6), 1996
PMID: 9164646
X-ray absorption spectroscopy study of zinc coordination in tetanus neurotoxin, astacin, alkaline protease and thermolysin.
Morante S, Furenlid L, Schiavo G, Tonello F, Zwilling R, Montecucco C., Eur J Biochem 235(3), 1996
PMID: 8654408
Computational sequence analysis of matrix metalloproteinases.
Sang QA, Douglas DA., J Protein Chem 15(2), 1996
PMID: 8924199
Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding.
Botos I, Scapozza L, Zhang D, Liotta LA, Meyer EF., Proc Natl Acad Sci U S A 93(7), 1996
PMID: 8610113
X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily.
Dhanaraj V, Ye QZ, Johnson LL, Hupe DJ, Ortwine DF, Dunbar JB, Rubin JR, Pavlovsky A, Humblet C, Blundell TL., Structure 4(4), 1996
PMID: 8740360
Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies.
Williamson RA, Natalia D, Gee CK, Murphy G, Carr MD, Freedman RB., Eur J Biochem 241(2), 1996
PMID: 8917445
Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the carboxyl-terminal region of syntaxins.
Schiavo G, Shone CC, Bennett MK, Scheller RH, Montecucco C., J Biol Chem 270(18), 1995
PMID: 7737992
Structural features of a superfamily of zinc-endopeptidases: the metzincins.
Stöcker W, Bode W., Curr Opin Struct Biol 5(3), 1995
PMID: 7583637
Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller.
Li J, Brick P, O'Hare MC, Skarzynski T, Lloyd LF, Curry VA, Clark IM, Bigg HF, Hazleman BL, Cawston TE., Structure 3(6), 1995
PMID: 8590015
Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme.
Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD., Protein Sci 4(10), 1995
PMID: 8535233
Matrilysin: expression, purification, and characterization.
Soler D, Nomizu T, Brown WE, Shibata Y, Auld DS., J Protein Chem 14(7), 1995
PMID: 8561847
Structure and function of tetanus and botulinum neurotoxins.
Montecucco C, Schiavo G., Q Rev Biophys 28(4), 1995
PMID: 8771234
Update on computer-aided drug design.
Jackson RC., Curr Opin Biotechnol 6(6), 1995
PMID: 8527834
Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor.
Van Doren SR, Kurochkin AV, Hu W, Ye QZ, Johnson LL, Hupe DJ, Zuiderweg ER., Protein Sci 4(12), 1995
PMID: 8580839
Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d).
Zhang D, Botos I, Gomis-Rüth FX, Doll R, Blood C, Njoroge FG, Fox JW, Bode W, Meyer EF., Proc Natl Acad Sci U S A 91(18), 1994
PMID: 8078901
Inhibition of matrix metalloproteinases in rheumatoid arthritis and the crystallographic binding mode of a peptide inhibitor.
Tschesche H, Bläser J, Kleine T, Schnierer S, Reinemer P, Bode W, Maasjoshusmann U, Fricke C., Ann N Y Acad Sci 732(), 1994
PMID: 7978819
Zinc content of the Bacillus anthracis lethal factor.
Kochi SK, Schiavo G, Mock M, Montecucco C., FEMS Microbiol Lett 124(3), 1994
PMID: 7851740
Structure-based drug design.
Colman PM., Curr Opin Struct Biol 4(6), 1994
PMID: 7712290

39 References

Daten bereitgestellt von Europe PubMed Central.

A comparison of the heme binding pocket in globins and cytochrome b5.
Rossmann MG, Argos P., J. Biol. Chem. 250(18), 1975
PMID: 1165251
Chain conformation in the collagen molecule.
Fraser RD, MacRae TP, Suzuki E., J. Mol. Biol. 129(3), 1979
PMID: 458854
On the size of the active site in proteases. I. Papain.
Schechter I, Berger A., Biochem. Biophys. Res. Commun. 27(2), 1967
PMID: 6035483
Structural implications for the role of the N terminus in the 'superactivation' of collagenases. A crystallographic study.
Reinemer P, Grams F, Huber R, Kleine T, Schnierer S, Piper M, Tschesche H, Bode W., FEBS Lett. 338(2), 1994
PMID: 8307185
Direct activation of human neutrophil procollagenase by recombinant stromelysin.
Knauper V, Wilhelm SM, Seperack PK, DeClerck YA, Langley KE, Osthues A, Tschesche H., Biochem. J. 295 ( Pt 2)(), 1993
PMID: 8240261
Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity.
Hirose T, Patterson C, Pourmotabbed T, Mainardi CL, Hasty KA., Proc. Natl. Acad. Sci. U.S.A. 90(7), 1993
PMID: 8464863
Matrix metalloproteinases: a review.
Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA., Crit. Rev. Oral Biol. Med. 4(2), 1993
PMID: 8435466
Fragmentation of human polymorphonuclear-leucocyte collagenase.
Knauper V, Osthues A, DeClerck YA, Langley KE, Blaser J, Tschesche H., Biochem. J. 291 ( Pt 3)(), 1993
PMID: 8489511
The recombinant catalytic domain of human neutrophil collagenase lacks type I collagen substrate specificity.
Schnierer S, Kleine T, Gote T, Hillemann A, Knauper V, Tschesche H., Biochem. Biophys. Res. Commun. 191(2), 1993
PMID: 8460992
The matrix-degrading metalloproteinases.
Matrisian LM., Bioessays 14(7), 1992
PMID: 1445287
Structure of astacin and implications for activation of astacins and zinc-ligation of collagenases.
Bode W, Gomis-Ruth FX, Huber R, Zwilling R, Stocker W., Nature 358(6382), 1992
PMID: 1319561
The matrix metalloproteinases and their inhibitors.
Murphy G, Docherty AJ., Am. J. Respir. Cell Mol. Biol. 7(2), 1992
PMID: 1497900
The role of the C-terminal domain in collagenase and stromelysin specificity.
Murphy G, Allan JA, Willenbrock F, Cockett MI, O'Connell JP, Docherty AJ., J. Biol. Chem. 267(14), 1992
PMID: 1315762
Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin).
Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H., Biochemistry 29(44), 1990
PMID: 2176865
Mercurial activation of human polymorphonuclear leucocyte procollagenase.
Blaser J, Knauper V, Osthues A, Reinke H, Tschesche H., Eur. J. Biochem. 202(3), 1991
PMID: 1662606
Vertebrate collagenase inhibitor. II. Tetrapeptidyl hydroxamic acids.
Odake S, Okayama T, Obata M, Morikawa T, Hattori S, Hori H, Nagai Y., Chem. Pharm. Bull. 39(6), 1991
PMID: 1657422
Sequence specificities of human fibroblast and neutrophil collagenases.
Netzel-Arnett S, Fields GB, Birkedal-Hansen H, Van Wart HE, Fields G., J. Biol. Chem. 266(11), 1991
PMID: 1849891
Characterization of 58-kilodalton human neutrophil collagenase: comparison with human fibroblast collagenase.
Mallya SK, Mookhtiar KA, Gao Y, Brew K, Dioszegi M, Birkedal-Hansen H, Van Wart HE., Biochemistry 29(47), 1990
PMID: 2176876
Purification of human collagenases with a hydroxamic acid affinity column.
Moore WM, Spilburg CA., Biochemistry 25(18), 1986
PMID: 3021211
Secreted forms of human neutrophil collagenase.
Hasty KA, Hibbs MS, Kang AH, Mainardi CL., J. Biol. Chem. 261(12), 1986
PMID: 3007518
The activation of human skin fibroblast procollagenase. Sequence identification of the major conversion products.
Grant GA, Eisen AZ, Marmer BL, Roswit WT, Goldberg GI., J. Biol. Chem. 262(12), 1987
PMID: 3032947
The collagen substrate specificity of human neutrophil collagenase.
Hasty KA, Jeffrey JJ, Hibbs MS, Welgus HG., J. Biol. Chem. 262(21), 1987
PMID: 3038863
Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases.
Hasty KA, Pourmotabbed TF, Goldberg GI, Thompson JP, Spinella DG, Stevens RM, Mainardi CL., J. Biol. Chem. 265(20), 1990
PMID: 2164002
Generation of collagenase-resistant collagen by site-directed mutagenesis of murine pro alpha 1(I) collagen gene.
Wu H, Byrne MH, Stacey A, Goldring MB, Birkhead JR, Jaenisch R, Krane SM., Proc. Natl. Acad. Sci. U.S.A. 87(15), 1990
PMID: 2165607
Collagenase is a component of the specific granules of human neutrophil leucocytes.
Murphy G, Reynolds JJ, Bretz U, Baggiolini M., Biochem. J. 162(1), 1977
PMID: 192209

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 8137810
PubMed | Europe PMC

Suchen in

Google Scholar