Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse

Schleef M, Zühlke C, Schöffl F, Jockusch H (1994)
Neuromuscular Disorders 4(3): 205-217.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
In myotonic ADR mice that are homozygous for a defect in the muscular chloride channel gene adr/Clc-1, the hyperexcitability of fast muscles is associated with secondary changes in gene expression and fibre type composition, cDNA clones derived from a set of genes down regulated in fast muscles of the myotonic ADR mouse were isolated by a subtractive cloning procedure. A total of 1200 clones were analysed for high expression in fast muscle of wild type and low expression in mutant mouse. Differential transcript levels were verified by northern blot hybridizations. The identities of the corresponding transcripts were determined by sequencing as myosin heavy chain IIB, alpha-tropomyosin, troponin C, a Ca2+ ATPase and parvalbumin mRNAs. Of these, mRNAs for parvalbumin and myosin heavy chain IIB were drastically downregulated in myotonic muscle (to < 10% of control). A full length cDNA clone for skeletal muscle alpha-tropomyosin was homologous to the mouse fibroblast tropomyosin isoform 2, except for the portion encoding the alpha-tropomyosin specific amino acids 258-284. A cDNA derived from the 1100 nucleotide parvalbumin transcript was cloned and the sequence for the as yet unknown 3' extended trailer, generated by alternative polyadenylation, was determined.
Erscheinungsjahr
Zeitschriftentitel
Neuromuscular Disorders
Band
4
Ausgabe
3
Seite(n)
205-217
ISSN
PUB-ID

Zitieren

Schleef M, Zühlke C, Schöffl F, Jockusch H. Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse. Neuromuscular Disorders. 1994;4(3):205-217.
Schleef, M., Zühlke, C., Schöffl, F., & Jockusch, H. (1994). Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse. Neuromuscular Disorders, 4(3), 205-217. doi:10.1016/0960-8966(94)90021-3
Schleef, M., Zühlke, C., Schöffl, F., and Jockusch, H. (1994). Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse. Neuromuscular Disorders 4, 205-217.
Schleef, M., et al., 1994. Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse. Neuromuscular Disorders, 4(3), p 205-217.
M. Schleef, et al., “Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse”, Neuromuscular Disorders, vol. 4, 1994, pp. 205-217.
Schleef, M., Zühlke, C., Schöffl, F., Jockusch, H.: Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse. Neuromuscular Disorders. 4, 205-217 (1994).
Schleef, M., Zühlke, C., Schöffl, F., and Jockusch, Harald. “Subtractive cDNA cloning as a tool to analyse secondary effects of a muscle disease. Characterization of affected genes in the myotonic ADR mouse”. Neuromuscular Disorders 4.3 (1994): 205-217.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle.
Staunton L, Jockusch H, Wiegand C, Albrecht T, Ohlendieck K., Mol Biosyst 7(8), 2011
PMID: 21629954
Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle.
Agbulut O, Noirez P, Butler-Browne G, Jockusch H., FEBS Lett 561(1-3), 2004
PMID: 15013776
Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin.
Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN., Structure 7(10), 1999
PMID: 10545326
The gene encoding sarcoplasmic reticulum calcium ATPase-1 (Atp2a1) maps to distal mouse chromosome 7.
Schleef M, Simon-Chazottes D, Lengeling A, Klocke R, Jockusch H, Yarden Y, Guénet J., Mamm Genome 7(10), 1996
PMID: 8854873

77 References

Daten bereitgestellt von Europe PubMed Central.

Cellular and molecular diversities of mammalian skeletal muscle fibers.
Pette D, Staron RS., Rev. Physiol. Biochem. Pharmacol. 116(), 1990
PMID: 2149884
Three fast myosin heavy chains in adult rat skeletal muscle.
Bar A, Pette D., FEBS Lett. 235(1-2), 1988
PMID: 3402594
Anti-myosin heavy chain monoclonal antibodies reveal two IIB (fast) fiber subtypes.
Marini JF, Pons F, Anoal M, Leger J, Leger JJ., J. Histochem. Cytochem. 37(11), 1989
PMID: 2530269
Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle.
Fuchtbauer EM, Rowlerson AM, Gotz K, Friedrich G, Mabuchi K, Gergely J, Jockusch H., J. Histochem. Cytochem. 39(3), 1991
PMID: 1825216
Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles
Swynghedauw, Phys Rev 66(), 1986
Correlation of parvalbumin concentration with relaxation speed in mammalian muscles
Heizmann, 1982
Muscle fibre transformations in myotonic mouse mutants
Jockusch, 1990
Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties
Stuhlfauth, 1984
Reduction of myosin-light-chain phosphorylation and of parvalbumin content in myotonic mouse muscle and its reversal by tocainide.
Jockusch H, Reininghaus J, Stuhlfauth I, Zippel M., Eur. J. Biochem. 171(1-2), 1988
PMID: 3123225
Opposite regulation of the mRNAs for parvalbumin and p19/6.8 in myotonic mouse muscle.
Kluxen FW, Schoffl F, Berchtold MW, Jockusch H., Eur. J. Biochem. 176(1), 1988
PMID: 3138114
The myotonic mouse mutant ADR: physiological and histochemical properties of muscle.
Reininghaus J, Fuchtbauer EM, Bertram K, Jockusch H., Muscle Nerve 11(5), 1988
PMID: 2967431
Inactivation of muscle chloride channel by transposon insertion in myotonic mice.
Steinmeyer K, Klocke R, Ortland C, Gronemeier M, Jockusch H, Grunder S, Jentsch TJ., Nature 354(6351), 1991
PMID: 1659665
Nonsense and missense mutations in the muscular chloride channel gene CIc-1 of myotonic mice
Gronemeier, J Biol Chem (), 1994
Development of electrical myotonia in the ADR mouse: role of chloride conductance in myotubes and neonatal animals.
Wischmeyer E, Nolte E, Klocke R, Jockusch H, Brinkmeier H., Neuromuscul. Disord. 3(4), 1993
PMID: 8268723
Developmental control of the excitability of the muscle. Transplantation experiments on a myotonic mouse mutant
Füchtbauer, 1988
The skeletal muscle chloride channel in dominant and recessive human myotonia.
Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ., Science 257(5071), 1992
PMID: 1379744
Molecular basis of Thomsen's disease (autosomal dominant myotonia congenita).
George AL Jr, Crackower MA, Abdalla JA, Hudson AJ, Ebers GC., Nat. Genet. 3(4), 1993
PMID: 7981750
Developmental gene regulation in Aspergillus nidulans.
Timberlake WE., Dev. Biol. 78(2), 1980
PMID: 6997115
Selection and analysis of cloned developmentally-regulated Dictyostelium discoideum genes by hybridization-competition.
Mangiarotti G, Chung S, Zuker C, Lodish HF., Nucleic Acids Res. 9(4), 1981
PMID: 7232208
Differential expression of selected genes in human leukemia leukocytes
Shiosaka, 1982
Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.
Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ., Biochemistry 18(24), 1979
PMID: 518835
A simple and very efficient method for generating cDNA libraries.
Gubler U, Hoffman BJ., Gene 25(2-3), 1983
PMID: 6198242
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Yeast RNA polymerase II genes: isolation with antibody probes.
Young RA, Davis RW., Science 222(4625), 1983
PMID: 6356359
Packaging recombinant DNA molecules into bacteriophage particles in vitro
Hohn, 1977
Production of single-stranded plasmid DNA.
Vieira J, Messing J., Meth. Enzymol. 153(), 1987
PMID: 3323803
Subtractive hybridization of a cDNA library
Duguid, 1988

Maniatis, 1982
Improved tools for biological sequence comparison
Pearson, 1988
cDNA sequence and chromosomal localization of the mouse parvalbumin gene
Zühlke, Pva. Genet Res 54(), 1989
The structure of the mouse parvalbumin gene.
Schleef M, Zuhlke C, Jockusch H, Schoffl F., Mamm. Genome 3(4), 1992
PMID: 1611216
Isolation of a rat parvalbumin gene and full length cDNA.
Epstein P, Means AR, Berchtold MW., J. Biol. Chem. 261(13), 1986
PMID: 3009434
Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences.
Brandl CJ, Green NM, Korczak B, MacLennan DH., Cell 44(4), 1986
PMID: 2936465
Human hTM alpha gene: expression in muscle and nonmuscle tissue.
MacLeod AR, Gooding C., Mol. Cell. Biol. 8(1), 1988
PMID: 3336363
Isolation and characterization of a cDNA that encodes mouse fibroblast tropomyosin isoform 2.
Takenaga K, Nakamura Y, Tokunaga K, Kageyama H, Sakiyama S., Mol. Cell. Biol. 8(12), 1988
PMID: 3244365
The amino acid sequence of rabbit cardiac tropomyosin.
Lewis WG, Smillie LB., J. Biol. Chem. 255(14), 1980
PMID: 6993480
Subtractive hybridization system using single-stranded phagemids with directional inserts.
Rubenstein JL, Brice AE, Ciaranello RD, Denney D, Porteus MH, Usdin TB., Nucleic Acids Res. 18(16), 1990
PMID: 2168539
Four fibroblast tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene via alternative RNA splicing and the use of two promoters.
Goodwin LO, Lees-Miller JP, Leonard MA, Cheley SB, Helfman DM., J. Biol. Chem. 266(13), 1991
PMID: 2022655
The tropomyosins
Lemonnier, Médicine/Sciences 6(), 1990
Differential splicing of muscular transcripts
Libri, Médicine/Sciences 6(), 1990
The molecular basis for tropomyosin isoform diversity.
Lees-Miller JP, Helfman DM., Bioessays 13(9), 1991
PMID: 1796905
Polyadenylation of mRNA precursors.
Manley JL., Biochim. Biophys. Acta 950(1), 1988
PMID: 2896017
Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA.
Lagace L, Chandra T, Woo SL, Means AR., J. Biol. Chem. 258(3), 1983
PMID: 6185488
How the messenger got its tail: addition of poly(A) in the nucleus
Wickens, TIBS 15(), 1990
The consensus sequence YGTGTTYY located downstream from the AATAAA signal is required for efficient formation of mRNA 3' termini.
McLauchlan J, Gaffney D, Whitton JL, Clements JB., Nucleic Acids Res. 13(4), 1985
PMID: 2987822
Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle.
Brandl CJ, deLeon S, Martin DR, MacLennan DH., J. Biol. Chem. 262(8), 1987
PMID: 3029125
Structure of the rabbit fast-twitch skeletal muscle Ca2+-ATPase gene.
Korczak B, Zarain-Herzberg A, Brandl CJ, Ingles CJ, Green NM, MacLennan DH., J. Biol. Chem. 263(10), 1988
PMID: 2965149
Messenger RNA. Springtime in the desert.
Wickens M., Nature 363(6427), 1993
PMID: 8497311
RNA metabolism: strategies for regulation in the heat shock response.
Yost HJ, Petersen RB, Lindquist S., Trends Genet. 6(7), 1990
PMID: 1697106
Alterations in phenotype expression of muscle by chronic nerve stimulation
Pette, 1985
Regulation of muscle AChR alpha subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+.
Klarsfeld A, Laufer R, Fontaine B, Devillers-Thiery A, Dubreuil C, Changeux JP., Neuron 2(3), 1989
PMID: 2516449
Transcriptional and posttranscriptional regulation of the rat prolactin gene by calcium.
Preston GM, Billis WM, White BA., Mol. Cell. Biol. 10(2), 1990
PMID: 2300047
Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity
Eftimie, 1992
The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA.
Buonanno A, Apone L, Morasso MI, Beers R, Brenner HR, Eftimie R., Nucleic Acids Res. 20(3), 1992
PMID: 1741288

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 7522680
PubMed | Europe PMC

Suchen in

Google Scholar