The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases

Schneider K, Müller A, Krahn E, Hagen WR, Wassink H, Knuttel KH (1995)
EUROPEAN JOURNAL OF BIOCHEMISTRY 230(2): 666-675.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schneider, KlausUniBi; Müller, AchimUniBi ; Krahn, E; Hagen, W. R.; Wassink, H.; Knuttel, K. H.
Abstract / Bemerkung
In the presence of molybdate (1 mu M) 2-3.5% oxygen and with sucrose as carbon source, Xanthobacter autotrophicus GZ29, a microaerophilic nitrogen-fixing hydrogen-oxidizing bacterium, grew diazotrophically with a minimal doubling time of 2.5 h and a calculated absorbance of up to 52 (546 nm). The maximal specific activity obtained was 145 nmol ethylene reduced . min(-1) . mg protein(-1) (crude extract). The Mo nitrogenase was derepressed to a comparable level with methionine as nitrogen source. Vanadium compounds stimulated neither growth nor nitrogenase activity. Without added molybdate, diazotrophic growth and nitrogenase activity decreased to an extremely low level, The nitrogenase, responsible for the residual activity in molybdate-starved cells, contained molybdate but no other heterometal atom. These results indicate that, in X. autotrophicus, a Mo-independent nitrogenase does not exist. However, the molybdate-containing nitrogenase exhibited some properties which are reminiscent of alternative nitrogenases. The MoFe protein (component 1, Xa1) copurified with two molecules of a small, not previously detected polypeptide (molar mass 13.6 kDa) and was able to reduce acetylene not only to ethylene but also partly ro ethane. Under certain conditions, i.e. in Tris/HCl buffer at alkaline pH values, with titanium (III) citrate as electron donor, at high component 1/component 2 ratios, and at low, non-saturating acetylene concentrations, up to 5.5% ethane was measured. Parallel to the pH-dependent increase of the relative yield of ethane, the total activity (both acetylene and nitrogen reduction rates) decreased and the S = 3/2 FeMo cofactor ESR signal was split into three signals with different rhombicities [E/D values of 0.036 (signal I), 0.072 (signal II) and 0.11 (signal III)]. The intensities of the two new FeMo cofactor signals were more pronounced the more alkaline the pH. They could be further enhanced using titanium (III) citrate instead of Na2S2O4 as reductant.
Stichworte
FEMO COFACTOR; MOFE PROTEIN; ESR; ETHANE FORMATION; NITROGENASE
Erscheinungsjahr
1995
Zeitschriftentitel
EUROPEAN JOURNAL OF BIOCHEMISTRY
Band
230
Ausgabe
2
Seite(n)
666-675
ISSN
0014-2956
Page URI
https://pub.uni-bielefeld.de/record/1640722

Zitieren

Schneider K, Müller A, Krahn E, Hagen WR, Wassink H, Knuttel KH. The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY. 1995;230(2):666-675.
Schneider, K., Müller, A., Krahn, E., Hagen, W. R., Wassink, H., & Knuttel, K. H. (1995). The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY, 230(2), 666-675.
Schneider, Klaus, Müller, Achim, Krahn, E, Hagen, W. R., Wassink, H., and Knuttel, K. H. 1995. “The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases”. EUROPEAN JOURNAL OF BIOCHEMISTRY 230 (2): 666-675.
Schneider, K., Müller, A., Krahn, E., Hagen, W. R., Wassink, H., and Knuttel, K. H. (1995). The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY 230, 666-675.
Schneider, K., et al., 1995. The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY, 230(2), p 666-675.
K. Schneider, et al., “The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases”, EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 230, 1995, pp. 666-675.
Schneider, K., Müller, A., Krahn, E., Hagen, W.R., Wassink, H., Knuttel, K.H.: The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases. EUROPEAN JOURNAL OF BIOCHEMISTRY. 230, 666-675 (1995).
Schneider, Klaus, Müller, Achim, Krahn, E, Hagen, W. R., Wassink, H., and Knuttel, K. H. “The Molybdenium nitrogenase from wild-type Xanthobacter-Autotrophicus exhibits properties reminiscent of alternative nitrogenases”. EUROPEAN JOURNAL OF BIOCHEMISTRY 230.2 (1995): 666-675.

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Ambient nitrogen reduction cycle using a hybrid inorganic-biological system.
Liu C, Sakimoto KK, Colón BC, Silver PA, Nocera DG., Proc Natl Acad Sci U S A 114(25), 2017
PMID: 28588143
Turnover-dependent inactivation of the nitrogenase MoFe-protein at high pH.
Yang KY, Haynes CA, Spatzal T, Rees DC, Howard JB., Biochemistry 53(2), 2014
PMID: 24392967
Nitrogenase reduction of carbon-containing compounds.
Seefeldt LC, Yang ZY, Duval S, Dean DR., Biochim Biophys Acta 1827(8-9), 2013
PMID: 23597875
Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes.
Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R., BMC Genomics 13(), 2012
PMID: 22554235
FeMo cofactor biosynthesis in a nifE- mutant of Rhodobacter capsulatus.
Siemann S, Schneider K, Behrens K, Knöchel A, Klipp W, Müller A., Eur J Biochem 268(7), 2001
PMID: 11277916
Vanadium nitrogenase.
Rehder D., J Inorg Biochem 80(1-2), 2000
PMID: 10885473
Comparative biochemical characterization of the iron-only nitrogenase and the molybdenum nitrogenase from Rhodobacter capsulatus.
Schneider K, Gollan U, Dröttboom M, Selsemeier-Voigt S, Müller A., Eur J Biochem 244(3), 1997
PMID: 9108249

49 References

Daten bereitgestellt von Europe PubMed Central.


Palacios, 1993

AUTHOR UNKNOWN, 0
The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 A resolution structures.
Chan MK, Kim J, Rees DC., Science 260(5109), 1993
PMID: 8484118

AUTHOR UNKNOWN, 0
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii.
Hales BJ, Case EE, Morningstar JE, Dzeda MF, Mauterer LA., Biochemistry 25(23), 1986
PMID: 3026449
Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii.
Chisnell JR, Premakumar R, Bishop PE., J. Bacteriol. 170(1), 1988
PMID: 3121587
Identification of an alternative nitrogenase system in Rhodospirillum rubrum.
Lehman LJ, Roberts GP., J. Bacteriol. 173(18), 1991
PMID: 1909322
Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria.
Fallik E, Chan YK, Robson RL., J. Bacteriol. 173(1), 1991
PMID: 1987127
The vanadium nitrogenase of Azotobacter chroococcum. Purification and properties of the VFe protein.
Eady RR, Robson RL, Richardson TH, Miller RW, Hawkins M., Biochem. J. 244(1), 1987
PMID: 2821997
Rapid purification of the protein components of a highly active "iron only" nitrogenase.
Schneider K, Gollan U, Selsemeier-Voigt S, Plass W, Muller A., Naturwissenschaften 81(9), 1994
PMID: 7969501

Gollan, Eur, J. Biochem. 215(), 1993
Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins.
Eady RR, Smith BE, Cook KA, Postgate JR., Biochem. J. 128(3), 1972
PMID: 4344006
Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis.
Scott DJ, May HD, Newton WE, Brigle KE, Dean DR., Nature 343(6254), 1990
PMID: 2153269
Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29.
Berndt H, Ostwal KP, Lalucat J, Schumann C, Mayer F, Schlegel HG., Arch. Microbiol. 108(1), 1976
PMID: 1275646

Wiegel, Int. J. Syst. Bacteriol. 28(), 1978

Schlegel, Arch. Microbiol. 28(), 1961
Selective removal of molybdenum traces from growth media of N2-fixing bacteria.
Schneider K, Muller A, Johannes KU, Diemann E, Kottmann J., Anal. Biochem. 193(2), 1991
PMID: 1908197

Schmidt, Arch. Microbiol. 46(), 1963

Beisenherz, Z. Naturforsch. 8(), 1953

Muller, Naturwissenschaften 5(), 1988
Non heme (iron-sulfur) proteins of Azotobacter vinelandii.
Shethna YI, DerVartanian DV, Beinert H., Biochem. Biophys. Res. Commun. 31(6), 1968
PMID: 5668181
On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii.
Scherings G, Haaker H, Wassink H, Veeger C., Eur. J. Biochem. 135(3), 1983
PMID: 6578037
A novel S = 3/2 EPR signal associated with native Fe-proteins of nitrogenase.
Hagen WR, Eady RR, Dunham WR, Haaker H., FEBS Lett. 189(2), 1985
PMID: 2995120
Nitrogenase. VIII. Mossbauer and EPR spectroscopy. The MoFe protein component from Azotobacter vinelandii OP.
Munck E, Rhodes H, Orme-Johnson WH, Davis LC, Brill WJ, Shah VK., Biochim. Biophys. Acta 400(1), 1975
PMID: 167863

AUTHOR UNKNOWN, 0

Dilworth, Nature 7(), 1987
Nucleotide sequence and genetic analysis of the Rhodobacter capsulatus ORF6-nifUI SVW gene region: possible role of NifW in homocitrate processing.
Masepohl B, Angermuller S, Hennecke S, Hubner P, Moreno-Vivian C, Klipp W., Mol. Gen. Genet. 238(3), 1993
PMID: 8492805
Genetic evidence for an Azotobacter vinelandii nitrogenase lacking molybdenum and vanadium.
Pau RN, Mitchenall LA, Robson RL., J. Bacteriol. 171(1), 1989
PMID: 2914845
Isolated iron-molybdenum cofactor of nitrogenase exists in multiple forms in its oxidized and semi-reduced states.
Newton WE, Gheller SF, Feldman BJ, Dunham WR, Schultz FA., J. Biol. Chem. 264(4), 1989
PMID: 2536693

Burgess, Chem. Rev. 90(), 1990
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 7607241
PubMed | Europe PMC

Suchen in

Google Scholar