Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor

Müthing J, Duvar S, Nerger S, Büntemeyer H, Lehmann J (1995)
CYTOTECHNOLOGY 18(3): 193-206.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Primary bovine aortic endothelial cells were cultivated in serum supplemented medium without any additional growth factors. The anchorage dependent cells were propagated on Dormacell(R) microcarriers with covalently bound dimeric DEAE-groups at the surface of the dextrane beads. Cultivations were performed in 200 ml spinner cultures containing 1 g l(-1) to 3 g l(-1) of microcarriers. Out of five types of Dormacell(R) microcarriers with different ion exchange capacities ranging from 0.30 up to 0.65 meg g(-1), corresponding to nitrogen contents from 1.2% to 2.9%, respectively, optimal attachment and growth of endothelial cells were obtained with beads of highest nitrogen content (2.9%). Cells were seeded with ca 5 viable cells per microcarrier being sufficient to achieve fully confluent microcarriers after 4 to 5 days. Glucose concentrations decreased from 21 mM to uppermost half of the original concentrations. 4 mM glutamine was rapidly consumed and virtually exhausted after the cells reached confluency. Lactate concentrations raised to a maximum of 7 mM in spinner cultures, but was found to be reutilized in the stationary phase after glutamine limitation occurred. Serine was found to be the second most prominent amino acid being almost exhausted at confluency whereas alanine was produced in noteworthy amounts. Considerable decrease was determined for threonine, lysine and arginine; low consumption rates were observed for leucine, phenylalanine and methionine. All other amino acids did not alter significantly throughout cultivation. These data support that bovine aortic endothelial cells are capable to utilize glucose and glutamine as well as lactic acid (after glutamine exhaustion) as energy and/or carbon source. Finally, batch cultures in a 2 liter membrane stirred bioreactor with bubble-free aeration were performed to produce large quantities of endothelial cells using microcarrier concentrations of 3 g 1(-1).
Erscheinungsjahr
Zeitschriftentitel
CYTOTECHNOLOGY
Band
18
Ausgabe
3
Seite(n)
193-206
ISSN
PUB-ID

Zitieren

Müthing J, Duvar S, Nerger S, Büntemeyer H, Lehmann J. Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor. CYTOTECHNOLOGY. 1995;18(3):193-206.
Müthing, J., Duvar, S., Nerger, S., Büntemeyer, H., & Lehmann, J. (1995). Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor. CYTOTECHNOLOGY, 18(3), 193-206.
Müthing, J., Duvar, S., Nerger, S., Büntemeyer, H., and Lehmann, J. (1995). Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor. CYTOTECHNOLOGY 18, 193-206.
Müthing, J., et al., 1995. Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor. CYTOTECHNOLOGY, 18(3), p 193-206.
J. Müthing, et al., “Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor”, CYTOTECHNOLOGY, vol. 18, 1995, pp. 193-206.
Müthing, J., Duvar, S., Nerger, S., Büntemeyer, H., Lehmann, J.: Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor. CYTOTECHNOLOGY. 18, 193-206 (1995).
Müthing, Johannes, Duvar, S, Nerger, S, Büntemeyer, Heino, and Lehmann, J. “Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor”. CYTOTECHNOLOGY 18.3 (1995): 193-206.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Preferential binding of the anticancer drug rViscumin (recombinant mistletoe lectin) to terminally alpha2-6-sialylated neolacto-series gangliosides.
Müthing J, Burg M, Möckel B, Langer M, Metelmann-Strupat W, Werner A, Neumann U, Peter-Katalinic J, Eck J., Glycobiology 12(8), 2002
PMID: 12145189
Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers.
Werner A, Duvar S, Müthing J, Büntemeyer H, Lünsdorf H, Strauss M, Lehmann J., Biotechnol Bioeng 68(1), 2000
PMID: 10699872

28 References

Daten bereitgestellt von Europe PubMed Central.

Fermentation of bovine endothelial cells for preparation of endothelial cell-surface heparan sulphate.
Jerg KR, Baumann H, Keller R, Friedl P., Int. J. Biol. Macromol. 12(2), 1990
PMID: 2078531
Growth of human vascular endothelial cells on various types of microcarriers.
Schrimpf G, Friedl P., Cytotechnology 13(3), 1993
PMID: 7513181
Shear stress-induced release of nitric oxide from endothelial cells grown on beads.
Buga GM, Gold ME, Fukuto JM, Ignarro LJ., Hypertension 17(2), 1991
PMID: 1991651
Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells.
Reitzer LJ, Wice BM, Kennell D., J. Biol. Chem. 254(8), 1979
PMID: 429309
The use of cultured epithelial and endothelial cells for drug transport and metabolism studies.
Audus KL, Bartel RL, Hidalgo IJ, Borchardt RT., Pharm. Res. 7(5), 1990
PMID: 2195492
Use of endothelium cultured on microcarriers as a model for the microcirculation.
Busch C, Cancilla PA, DeBault LE, Goldsmith JC, Owen WG., Lab. Invest. 47(5), 1982
PMID: 6752573
Distinct adhesive properties of granulocytes and monocytes to endothelial cells under static and stirred conditions.
Kuijpers TW, Hakkert BC, van Mourik JA, Roos D., J. Immunol. 145(8), 1990
PMID: 1976697
Endothelium--an organized monolayer of highly specialized cells.
Hormia M, Virtanen I., Med. Biol. 64(5), 1986
PMID: 3543524
Serial propagation of mammalian cells on microcarriers.
Hu WS, Giard DJ, Wang DI., Biotechnol. Bioeng. 27(10), 1985
PMID: 18553593
Glutamine: a major energy source for cultured mammalian cells.
Zielke HR, Zielke CL, Ozand PT., Fed. Proc. 43(1), 1984
PMID: 6690331
Critical parameters in the microcarrier culture of animal cells.
Clark J, Hirstenstein H, Gebb C., Dev. Biol. Stand. 46(), 1980
PMID: 6153998
Optimization of serum-free fermentation processes for antibody production.
Buntemeyer H, Lutkemeyer D, Lehmann J., Cytotechnology 5(1), 1991
PMID: 1367052
The complexity of endothelial cells. A review.
Fajardo LF., Am. J. Clin. Pathol. 92(2), 1989
PMID: 2667329
Bubble free cell culture aeration with porous moving membranes.
Lehmann J, Piehl GW, Schulz R., Dev. Biol. Stand. 66(), 1987
PMID: 3582751
Ion exchange capacity of DEAE microcarriers determined the growth pattern of cells in culture.
Kotler M, Reuveny S, Mizrahi A, Shahar A., Dev. Biol. Stand. 60(), 1985
PMID: 3899787
Cell biology of endothelial cells.
Jaffe EA., Hum. Pathol. 18(3), 1987
PMID: 3546072
Lactate: a major product of glutamine metabolism by human diploid fibroblasts.
Zielke HR, Sumbilla CM, Sevdalian DA, Hawkins RL, Ozand PT., J. Cell. Physiol. 104(3), 1980
PMID: 7419614
The Super-Spinner: a low cost animal cell culture bioreactor for the CO2 incubator.
Heidemann R, Riese U, Lutkemeyer D, Buntemeyer H, Lehmann J., Cytotechnology 14(1), 1994
PMID: 7765107
Optimizing culture conditions for the production of animal cells in microcarrier culture.
Clark JM, Hirtenstein MD., Ann. N. Y. Acad. Sci. 369(), 1981
PMID: 6942784

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22358745
PubMed | Europe PMC

Suchen in

Google Scholar