Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation

Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T (1996)
BIOPHYSICAL JOURNAL 71(2): 868-877.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Neumann, EberhardUniBi; Kakorin, SergejUniBi; Tsoneva, I; Nikolova, B; Tomov, T
Abstract / Bemerkung
Detailed kinetic data suggest that the direct transfer of plasmid DNA (YEp 351, 5.6 kbp, supercoiled, M(r) approximate to 3.5 x 10(6)) by membrane electroporation of yeast cells (Saccharomyces cerevisiae, strain AH 215) is mainly due to electrodiffusive processes. The rate-limiting step for the cell transformation, however, is a bimolecular DNA-binding interaction in the cell interior. Both the adsorption of DNA, directly measured with [P-32]dCTP DNA, and the number of transformants are collinearly enhanced with increasing total concentrations [D-t] and [Ca-t] of DNA and of calcium, respectively. At [Ca-t] = 1 mM, the half-saturation or equilibrium constant is <(K)over bar (D)> = 15 +/- 1 nM al 293 K (20 degrees C). The optimal transformation frequency is TFopt = 4.1 +/- 0.4 x 10(-5) if a single exponential pulse of initial field strength E(0) = 4 kV cm(-1) and decay time constant tau(E) = 45 ms is applied al [D-t] = 2.7 nM and 10(8) cells in 0.1 mi. The dependence of TF on [Ca-t] yields the equilibrium constants K-Ca(0) = 1.8 +/- 0.2 mM (in the absence of DNA) and K-Ca' (at 2.7 nM DNA), comparable with and derived from electrophoresis data. In yeast cells, too, the appearance of a DNA molecule in its whole length in the cell interior is clearly an after-field event. At E(0) = 4.0 kV cm(-1) and T = 293 K, the flow coefficient of DNA through the porous membrane patches is k(f)(0) = 7.0 +/- 0.7 x 10(3) s(-1) and the electrodiffusion of DNA is approximately 10 times more effective than simple diffusion: D/D-o approximate to 10.3. The mean radius of these pores is r(p) = 0.39 +/- 0.05 nm, and the mean number of pores per cell (of size empty set approximate to 5.5 mu m) is N-p = 2.2 +/- 0.2 x 10(4). The maximal membrane area that is involved in the electrodiffusive penetration of adsorbed DNA into the outer surface of the electroporated cell membrane patches is only 0.023% of the total cell surface. The surface penetration is followed either by additional electrodiffusive or by passive (after-field) diffusive translocation of the inserted DNA into the cell interior. For practical purposes of optimal transformation efficiency, 1 mM calcium is necessary for sufficient DNA binding and the relatively long pulse duration of 20-40 ms is required to achieve efficient electrodiffusive transport across the cell wall and into the outer surface of electroporated cell membrane patches.
Erscheinungsjahr
1996
Zeitschriftentitel
BIOPHYSICAL JOURNAL
Band
71
Ausgabe
2
Seite(n)
868-877
ISSN
0006-3495
Page URI
https://pub.uni-bielefeld.de/record/1638754

Zitieren

Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL. 1996;71(2):868-877.
Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., & Tomov, T. (1996). Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL, 71(2), 868-877. https://doi.org/10.1016/S0006-3495(96)79288-3
Neumann, Eberhard, Kakorin, Sergej, Tsoneva, I, Nikolova, B, and Tomov, T. 1996. “Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation”. BIOPHYSICAL JOURNAL 71 (2): 868-877.
Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., and Tomov, T. (1996). Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL 71, 868-877.
Neumann, E., et al., 1996. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL, 71(2), p 868-877.
E. Neumann, et al., “Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation”, BIOPHYSICAL JOURNAL, vol. 71, 1996, pp. 868-877.
Neumann, E., Kakorin, S., Tsoneva, I., Nikolova, B., Tomov, T.: Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. BIOPHYSICAL JOURNAL. 71, 868-877 (1996).
Neumann, Eberhard, Kakorin, Sergej, Tsoneva, I, Nikolova, B, and Tomov, T. “Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation”. BIOPHYSICAL JOURNAL 71.2 (1996): 868-877.

56 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Gene Electrotransfer: A Mechanistic Perspective.
Rosazza C, Meglic SH, Zumbusch A, Rols MP, Miklavcic D., Curr Gene Ther 16(2), 2016
PMID: 27029943
The dependence of efficiency of transmembrane molecular transfer using electroporation on medium viscosity.
Sungailaitė S, Ruzgys P, Šatkauskienė I, Čepurnienė K, Šatkauskas S., J Gene Med 17(3-5), 2015
PMID: 25761762
Ecologically driven competence for exogenous DNA uptake in yeast.
Mitrikeski PT., Curr Microbiol 70(6), 2015
PMID: 25824091
Optimizing hyaluronidase dose and plasmid DNA delivery greatly improves gene electrotransfer efficiency in rat skeletal muscle.
Akerstrom T, Vedel K, Needham J, Hojman P, Kontou E, Hellsten Y, Wojtaszewski JFP., Biochem Biophys Rep 4(), 2015
PMID: 29124223
Electric field-induced effects on yeast cell wall permeabilization.
Stirke A, Zimkus A, Ramanaviciene A, Balevicius S, Zurauskiene N, Saulis G, Chaustova L, Stankevic V, Ramanavicius A., Bioelectromagnetics 35(2), 2014
PMID: 24203648
Physical methods for genetic transformation of fungi and yeast.
Rivera AL, Magaña-Ortíz D, Gómez-Lim M, Fernández F, Loske AM., Phys Life Rev 11(2), 2014
PMID: 24507729
Scaling relationship and optimization of double-pulse electroporation.
Sadik MM, Yu M, Zheng M, Zahn JD, Shan JW, Shreiber DI, Lin H., Biophys J 106(4), 2014
PMID: 24559983
Quantification of propidium iodide delivery using millisecond electric pulses: experiments.
Sadik MM, Li J, Shan JW, Shreiber DI, Lin H., Biochim Biophys Acta 1828(4), 2013
PMID: 23313458
Fluorescent imaging for assessment of the effect of combined application of electroporation and rifampicin on HaCaT cells as a new therapeutic approach for psoriasis.
Nikolova B, Kostadinova A, Dimitrov B, Zhelev Z, Bakalova R, Aoki I, Saga T, Tsoneva I., Sensors (Basel) 13(3), 2013
PMID: 23493125
Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level.
Haberl S, Kandušer M, Flisar K, Hodžić D, Bregar VB, Miklavčič D, Escoffre JM, Rols MP, Pavlin M., J Gene Med 15(5), 2013
PMID: 23564663
Towards the mechanisms for efficient gene transfer into cells and tissues by means of cell electroporation.
Satkauskas S, Ruzgys P, Venslauskas MS., Expert Opin Biol Ther 12(3), 2012
PMID: 22339479
A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected.
Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR., Bioelectrochemistry 87(), 2012
PMID: 22475953
Multiple effects of electroporation on the adhesive behaviour of breast cancer cells and fibroblasts.
Pehlivanova VN, Tsoneva IH, Tzoneva RD., Cancer Cell Int 12(1), 2012
PMID: 22439612
Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake.
Raffa V, Gherardini L, Vittorio O, Bardi G, Ziaei A, Pizzorusso T, Riggio C, Nitodas S, Karachalios T, Al-Jamal KT, Kostarelos K, Costa M, Cuschieri A., Nanomedicine (Lond) 6(10), 2011
PMID: 22122583
An improved yeast transformation method for the generation of very large human antibody libraries.
Benatuil L, Perez JM, Belk J, Hsieh CM., Protein Eng Des Sel 23(4), 2010
PMID: 20130105
Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses.
Cepurniene K, Ruzgys P, Treinys R, Satkauskiene I, Satkauskas S., J Membr Biol 236(1), 2010
PMID: 20623115
Electrodelivery of drugs into cancer cells in the presence of poloxamer 188.
Tsoneva I, Iordanov I, Berger AJ, Tomov T, Nikolova B, Mudrov N, Berger MR., J Biomed Biotechnol 2010(), 2010
PMID: 20706647
Mechanisms involved in gene electrotransfer using high- and low-voltage pulses--an in vitro study.
Kanduser M, Miklavcic D, Pavlin M., Bioelectrochemistry 74(2), 2009
PMID: 18930698
Enhanced low voltage cell electropermeabilization by boron nitride nanotubes.
Raffa V, Ciofani G, Cuschieri A., Nanotechnology 20(7), 2009
PMID: 19417408
Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae)
Shynkaryk MV, Lebovka NI, Lanoisellé J-L, Nonus M, Bedel-Clotour C, Vorobiev E., Journal of food engineering. 92(2), 2009
PMID: IND44162704
Gene electrotransfer: from biophysical mechanisms to in vivo applications : Part 1- Biophysical mechanisms.
Escoffre JM, Mauroy C, Portet T, Wasungu L, Rosazza C, Gilbart Y, Mallet L, Bellard E, Golzio M, Rols MP, Teissié J., Biophys Rev 1(4), 2009
PMID: 28510029
Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode.
Heller LC, Jaroszeski MJ, Coppola D, McCray AN, Hickey J, Heller R., Gene Ther 14(3), 2007
PMID: 16988718
Modeling electroporation in a single cell.
Krassowska W, Filev PD., Biophys J 92(2), 2007
PMID: 17056739
Interfacial ternary complex DNA/Ca/lipids at anionic vesicle surfaces.
Frantescu A, Tönsing K, Neumann E., Bioelectrochemistry 68(2), 2006
PMID: 16125472
The early stages of Saccharomyces cerevisiae yeast suspensions damage in moderate pulsed electric fields.
El Zakhem H, Lanoisellé JL, Lebovka NI, Nonus M, Vorobiev E., Colloids Surf B Biointerfaces 47(2), 2006
PMID: 16427256
Inhibitory effect of Ca2+ on in vivo gene transfer by electroporation.
Zhao YG, Lu HL, Peng JL, Xu YH., Acta Pharmacol Sin 27(3), 2006
PMID: 16490166
Optimization of an electroporation protocol using the K562 cell line as a model: role of cell cycle phase and cytoplasmic DNAses.
Delgado-Cañedo A, Santos DG, Chies JA, Kvitko K, Nardi NB., Cytotechnology 51(3), 2006
PMID: 19002884
Electroporation for targeted gene transfer.
Heller LC, Ugen K, Heller R., Expert Opin Drug Deliv 2(2), 2005
PMID: 16296752
Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer.
Satkauskas S, André F, Bureau MF, Scherman D, Miklavcic D, Mir LM., Hum Gene Ther 16(10), 2005
PMID: 16218780
Adsorption of DNA and electric fields decrease the rigidity of lipid vesicle membranes.
Frantescu A, Kakorin S, Toensing K, Neumann E., Phys Chem Chem Phys 7(24), 2005
PMID: 16474877
Electroporation of subcutaneous mouse tumors by rectangular and trapezium high voltage pulses.
Pliquett U, Elez R, Piiper A, Neumann E., Bioelectrochemistry 62(1), 2004
PMID: 14990329
Model of creation and evolution of stable electropores for DNA delivery.
Smith KC, Neu JC, Krassowska W., Biophys J 86(5), 2004
PMID: 15111399
The molecular basis of electroporation.
Tieleman DP., BMC Biochem 5(), 2004
PMID: 15260890
Electrical energy required to form large conducting pores.
Neu JC, Smith KC, Krassowska W., Bioelectrochemistry 60(1-2), 2003
PMID: 12893316
Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis.
Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, Mir LM., Mol Ther 5(2), 2002
PMID: 11829520
In vivo electroporation for genetic manipulations of whole Hydra polyps.
Bosch TC, Augustin R, Gellner K, Khalturin K, Lohmann JU., Differentiation 70(4-5), 2002
PMID: 12147133
Digression on membrane electroporation for drug and gene delivery.
Neumann E, Kakorin S., Technol Cancer Res Treat 1(5), 2002
PMID: 12625758
Single-cell electroporation for gene transfer in vivo.
Haas K, Sin WC, Javaherian A, Li Z, Cline HT., Neuron 29(3), 2001
PMID: 11301019
Perspectives for microelectrode arrays for biosensing and membrane electroporation.
Neumann E, Tönsing K, Siemens P., Bioelectrochemistry 51(2), 2000
PMID: 10910160
Gerhard schwarz: scientist and colleague
Neuman E, Winterhalter M., Biophys Chem 85(2-3), 2000
PMID: 10961499
Electroporation of curved lipid membranes in ionic strength gradients
Neumann E, Kakorin S., Biophys Chem 85(2-3), 2000
PMID: 10961510
Theory and in vivo application of electroporative gene delivery.
Somiari S, Glasspool-Malone J, Drabick JJ, Gilbert RA, Heller R, Jaroszeski MJ, Malone RW., Mol Ther 2(3), 2000
PMID: 10985947
Fundamentals of electroporative delivery of drugs and genes.
Neumann E, Kakorin S, Toensing K., Bioelectrochem Bioenerg 48(1), 1999
PMID: 10228565
Mechanism of electroporative dye uptake by mouse B cells.
Neumann E, Toensing K, Kakorin S, Budde P, Frey J., Biophys J 74(1), 1998
PMID: 9449314
Control by osmotic pressure of voltage-induced permeabilization and gene transfer in mammalian cells.
Golzio M, Mora MP, Raynaud C, Delteil C, Teissié J, Rols MP., Biophys J 74(6), 1998
PMID: 9635756
One stop mycology.
Frazer LN., Mycol Res 101(4), 1997
PMID: IND20620459
Sphingosine-mediated electroporative DNA transfer through lipid bilayers.
Hristova NI, Tsoneva I, Neumann E., FEBS Lett 415(1), 1997
PMID: 9326374

21 References

Daten bereitgestellt von Europe PubMed Central.

Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
Kakorin S, Stoylov SP, Neumann E., Biophys. Chem. 58(1-2), 1996
PMID: 8679914
Yeast/E. coli shuttle vectors with multiple unique restriction sites.
Hill JE, Myers AM, Koerner TJ, Tzagoloff A., Yeast 2(3), 1986
PMID: 3333305
Tissue specificity of the initiation of immunoglobulin kappa gene transcription.
Falkner FG, Neumann E, Zachau HG., Hoppe-Seyler's Z. Physiol. Chem. 365(11), 1984
PMID: 6096254
Expression of the Thy-1 glycoprotein gene by DNA-mediated gene transfer.
Evans GA, Ingraham HA, Lewis K, Cunningham K, Seki T, Moriuchi T, Chang HC, Silver J, Hyman R., Proc. Natl. Acad. Sci. U.S.A. 81(17), 1984
PMID: 6147849
Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores.
Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev YuA ., Biophys. J. 63(5), 1992
PMID: 1282374
High efficiency transformation of intact yeast cells by electric field pulses.
Meilhoc E, Masson JM, Teissie J., Biotechnology (N.Y.) 8(3), 1990
PMID: 1366502
Fast kinetics studies of Escherichia coli electrotransformation.
Eynard N, Sixou S, Duran N, Teissie J., Eur. J. Biochem. 209(1), 1992
PMID: 1396716
Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis.
Klenchin VA, Sukharev SI, Serov SM, Chernomordik LV, Chizmadzhev YuA ., Biophys. J. 60(4), 1991
PMID: 1660315
Membrane electroporation--fast molecular exchange by electroosmosis.
Dimitrov DS, Sowers AE., Biochim. Biophys. Acta 1022(3), 1990
PMID: 1690573
Gene transfer into mouse lyoma cells by electroporation in high electric fields.
Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH., EMBO J. 1(7), 1982
PMID: 6329708
Electric field mediated gene transfer.
Wong TK, Neumann E., Biochem. Biophys. Res. Commun. 107(2), 1982
PMID: 7126230
Effect of n-alcohols on the electrotransformation and permeability of Saccharomyces cerevisiae.
Ganeva VJ, Tsoneva IC., Appl. Microbiol. Biotechnol. 38(6), 1993
PMID: 7763536
Dip patch clamp currents suggest electrodiffusive transport of the polyelectrolyte DNA through lipid bilayers.
Spassova M, Tsoneva I, Petrov AG, Petkova JI, Neumann E., Biophys. Chem. 52(3), 1994
PMID: 7999976
Reversible electrical breakdown of lipid bilayers: formation and evolution of pores.
Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI., Biochim. Biophys. Acta 940(2), 1988
PMID: 2453213
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 8842225
PubMed | Europe PMC

Suchen in

Google Scholar