GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)

Mpodozis J, Cox K, Shimizu T, Bischof H-J, Woodson W, Karten HJ (1996)
JOURNAL OF COMPARATIVE NEUROLOGY 374(2): 204-222.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Mpodozis, J; Cox, K; Shimizu, T; Bischof, Hans-JoachimUniBi; Woodson, W; Karten, HJ
Abstract / Bemerkung
The avian nucleus rotundus, a nucleus that appears to be homologous to the inferior/caudal pulvinar of mammals, is the major target of an ascending retino-tecto-thalamic pathway. Further clarification of the inputs to the rotundus and their functional properties will contribute to our understanding of the fundamental role of the ascending tectal inputs to the telencephalon in all vertebrates, including mammals. We found that the rotundus contains a massive plexus of glutamic acid decarboxylase (GAD)-immunoreactive axons using antibodies against GAD. The cells within the rotundus, however, were not immunoreactive for GAD. The retrograde tracer cholera toxin B fragment was injected into the rotundus to establish the location of the afferent neurons and determine the source of the gamma aminobutyric acid (GABA) inputs into the rotundus. In addition to the recognized bilateral inputs from layer 13 of the tectum, we found intense retrograde labeling of neurons within the ipsilateral nuclei subpretectalis (SP), subpretectalis-caudalis (SPcd), interstitio-pretecto-subpretectalis (IFS), posteroventralis thalami (PV), and reticularis superior thalami (RS). All the neurons of the SP, SPcd, IFS, and PV were intensely GAD-immunoreactive. The neurons of layer 13 of the tectum were not immunoreactive for GAD. Following the destruction of the ipsilateral SP/IPS complex, we found a major reduction in the intensity of the GAD axonal immunoreactivity within the ipsilateral rotundus, but this destruction did not diminish the intensity of the GAD-immunoreactivity within the contralateral rotundus. Our studies indicated that the source of the massive GAD-immunoreactive plexus within the rotundus was from the ipsilateral SP, SPcd, IFS, and PV nuclei. These nuclei, in turn, received ipsilateral tectal input via collaterals of the neurons of layer 13 in the course of their projections upon the rotundus. We suggest that the direct bilateral tecto-rotundal projections are excitatory, whereas the indirect ipsilateral projections from the SP/IPS and PV are mainly inhibitory, possibly acting via a GABA-A receptor. (C) 1996 Wiley-Liss, Inc.
Stichworte
tectofugal system; visual system; pretectum; evolution; birds
Erscheinungsjahr
1996
Zeitschriftentitel
JOURNAL OF COMPARATIVE NEUROLOGY
Band
374
Ausgabe
2
Seite(n)
204-222
ISSN
0021-9967
eISSN
1096-9861
Page URI
https://pub.uni-bielefeld.de/record/1638274

Zitieren

Mpodozis J, Cox K, Shimizu T, Bischof H-J, Woodson W, Karten HJ. GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY. 1996;374(2):204-222.
Mpodozis, J., Cox, K., Shimizu, T., Bischof, H. - J., Woodson, W., & Karten, H. J. (1996). GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY, 374(2), 204-222. https://doi.org/10.1002/(SICI)1096-9861(19961014)374:2<204::AID-CNE4>3.0.CO;2-6
Mpodozis, J, Cox, K, Shimizu, T, Bischof, Hans-Joachim, Woodson, W, and Karten, HJ. 1996. “GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)”. JOURNAL OF COMPARATIVE NEUROLOGY 374 (2): 204-222.
Mpodozis, J., Cox, K., Shimizu, T., Bischof, H. - J., Woodson, W., and Karten, H. J. (1996). GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY 374, 204-222.
Mpodozis, J., et al., 1996. GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY, 374(2), p 204-222.
J. Mpodozis, et al., “GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)”, JOURNAL OF COMPARATIVE NEUROLOGY, vol. 374, 1996, pp. 204-222.
Mpodozis, J., Cox, K., Shimizu, T., Bischof, H.-J., Woodson, W., Karten, H.J.: GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia). JOURNAL OF COMPARATIVE NEUROLOGY. 374, 204-222 (1996).
Mpodozis, J, Cox, K, Shimizu, T, Bischof, Hans-Joachim, Woodson, W, and Karten, HJ. “GABAergic inputs to the nucleus rotundus (Pulvinar inferior) of the pigeon (Columba livia)”. JOURNAL OF COMPARATIVE NEUROLOGY 374.2 (1996): 204-222.

52 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A GABAergic tecto-tegmento-tectal pathway in pigeons.
Stacho M, Letzner S, Theiss C, Manns M, Güntürkün O., J Comp Neurol 524(14), 2016
PMID: 26991544
Roots of a social brain: developmental models of emerging animacy-detection mechanisms.
Rosa Salva O, Mayer U, Vallortigara G., Neurosci Biobehav Rev 50(), 2015
PMID: 25544151
Anatomical organization of the visual dorsal ventricular ridge in the chick (Gallus gallus): Layers and columns in the avian pallium.
Ahumada-Galleguillos P, Fernández M, Marin GJ, Letelier JC, Mpodozis J., J Comp Neurol 523(17), 2015
PMID: 25982840
Processing of motion stimuli by cells in the optic tectum of chickens.
Verhaal J, Luksch H., Neuroreport 26(10), 2015
PMID: 26053699
Mosaic and concerted evolution in the visual system of birds.
Gutiérrez-Ibáñez C, Iwaniuk AN, Moore BA, Fernández-Juricic E, Corfield JR, Krilow JM, Kolominsky J, Wylie DR., PLoS One 9(3), 2014
PMID: 24621573
Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.
Acerbo MJ, Lazareva OF, McInnerney J, Leiker E, Wasserman EA, Poremba A., Vision Res 70(), 2012
PMID: 22917681
Hippocampal memory consolidation during sleep: a comparison of mammals and birds.
Rattenborg NC, Martinez-Gonzalez D, Roth TC, Pravosudov VV., Biol Rev Camb Philos Soc 86(3), 2011
PMID: 21070585
Evolution of the amniote pallium and the origins of mammalian neocortex.
Butler AB, Reiner A, Karten HJ., Ann N Y Acad Sci 1225(), 2011
PMID: 21534989
Anatomical specializations for nocturnality in a critically endangered parrot, the Kakapo (Strigops habroptilus).
Corfield JR, Gsell AC, Brunton D, Heesy CP, Hall MI, Acosta ML, Iwaniuk AN., PLoS One 6(8), 2011
PMID: 21860663
Motion processing with wide-field neurons in the retino-tecto-rotundal pathway.
Dellen B, Wessel R, Clark JW, Wörgötter F., J Comput Neurosci 28(1), 2010
PMID: 19795201
Avian visual behavior and the organization of the telencephalon.
Shimizu T, Patton TB, Husband SA., Brain Behav Evol 75(3), 2010
PMID: 20733296
Topographic arrangement of the rotundo-entopallial projection in the pigeon (Columba livia).
Fredes F, Tapia S, Letelier JC, Marín G, Mpodozis J., J Comp Neurol 518(21), 2010
PMID: 20853511
Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): a hodological and GABA-immunocytochemical study.
Miceli D, Repérant J, Ward R, Rio JP, Jay B, Médina M, Kenigfest NB., J Comp Neurol 507(3), 2008
PMID: 18189307
Tectorotundal connections in turtles: an electron microscopic tracing and GABA-immunocytochemical study.
Kenigfest NB, Rio JP, Belekhova MG, Repérant J, Ward R, Jay B, Vesselkin NP., Brain Res 1186(), 2007
PMID: 17996857
Definition and novel connections of the entopallium in the pigeon (Columba livia).
Krützfeldt NO, Wild JM., J Comp Neurol 490(1), 2005
PMID: 16041718
The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus.
Kenigfest N, Belekhova M, Repérant J, Rio JP, Ward R, Vesselkin N., J Chem Neuroanat 30(2-3), 2005
PMID: 16140498
Spatial organization of the pigeon tectorotundal pathway: an interdigitating topographic arrangement.
Marín G, Letelier JC, Henny P, Sentis E, Farfán G, Fredes F, Pohl N, Karten H, Mpodozis J., J Comp Neurol 458(4), 2003
PMID: 12619071
Regulation of ipsilateral visual information within the tectofugal visual system in zebra finches.
Voss J, Bischof HJ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(7), 2003
PMID: 12811488
Quantitative features of the nucleus rotundus in the brain of pre- and post-hatch chicks.
Con N, Canbilen A, Bradley PM, Kaplan S., Brain Res Dev Brain Res 146(1-2), 2003
PMID: 14643013
Mesencephalic and diencephalic afferent connections to the thalamic nucleus rotundus in the lizard, Psammodromus algirus.
Dávila JC, Andreu MJ, Real MA, Puelles L, Guirado S., Eur J Neurosci 16(2), 2002
PMID: 12169109
A simple method to microinject solid neural tracers into deep structures of the brain.
Marín G, Henny P, Letelier JC, Sentis E, Karten H, Mrosko B, Mpodozis J., J Neurosci Methods 106(2), 2001
PMID: 11325431
Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigeons.
Hellmann B, Manns M, Güntürkün O., J Comp Neurol 436(2), 2001
PMID: 11438921
The transport rate of cholera toxin B subunit in the retinofugal pathways of the chick.
Wu CC, Russell RM, Karten HJ., Neuroscience 92(2), 1999
PMID: 10408614
Visual circuits of the avian telencephalon: evolutionary implications.
Shimizu T, Bowers AN., Behav Brain Res 98(2), 1999
PMID: 10683106
Efferent projections of the ectostriatum in the pigeon (Columba livia).
Husband SA, Shimizu T., J Comp Neurol 406(3), 1999
PMID: 10102499
Reafferent thalamo- "cortical" loops in the song system of oscine songbirds.
Vates GE, Vicario DS, Nottebohm F., J Comp Neurol 380(2), 1997
PMID: 9100137

37 References

Daten bereitgestellt von Europe PubMed Central.


Bischof, Cell Tissue Res. 262(), 1990

Diamond, Symp. Zool. Soc. London 33(), 1973

Dye, Soc. Neurosci. Abstr. 19(), 1993

Engelage, 1993
Monoclonal antibodies to glutamic acid decarboxylase.
Gottlieb DI, Chang YC, Schwob JE., Proc. Natl. Acad. Sci. U.S.A. 83(22), 1986
PMID: 2430303
A versatile and simple method for staining nervous tissue using Giemsa dye.
Iniguez C, Gayoso MJ, Carreres J., J. Neurosci. Methods 13(1), 1985
PMID: 3887046

Karten, 1967
Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia).
Karten HJ, Hodos W., J. Comp. Neurol. 140(1), 1970
PMID: 5459211
The afferent connections of the nucleus rotundus in the pigeon.
Karten HJ, Revzin AM., Brain Res. 2(4), 1966
PMID: 5229929

Karten, Soc. Neurosci. Abstr. 19(), 1993

Kuhlenbeck, J. Comp. Neurol. 71(), 1939
Some data on GABA-ergic innervation of nucleus rotundus in chicks.
Ngo TD, Nemeth A, Tombol T., J Hirnforsch 33(4-5), 1992
PMID: 1479184
A Phaseolus lectin anterograde tracing study of the tectorotundal projections in the domestic chick.
Ngo TD, Davies DC, Egedi GY, Tombol T., J. Anat. 184 ( Pt 1)(), 1994
PMID: 8157485
Decrease of glutamate decarboxylase (GAD)-immunoreactive nerve terminals in the substantia nigra after kainic acid lesion of the striatum.
Oertel WH, Schmechel DE, Brownstein MJ, Tappaz ML, Ransom DH, Kopin IJ., J. Histochem. Cytochem. 29(8), 1981
PMID: 7024401

Revzin, 1979

Revzin, Brain Res. 3(), 1967

Shimizu, 1991

Shimizu, 1993

Shimizu, Soc. Neurosci. Abstr 14(), 1988
Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.
Swanson LW, Lindstrom J, Tzartos S, Schmued LC, O'Leary DD, Cowan WM., Proc. Natl. Acad. Sci. U.S.A. 80(14), 1983
PMID: 6192437

Tombol, J. Hirnforsch. 35(), 1994
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 8906494
PubMed | Europe PMC

Suchen in

Google Scholar