Numerical approximation of homoclinic chaos

Beyn W-J, Kleinkauf JM (1997)
Numerical Algorithms 14(1-3): 25-53.

Konferenzbeitrag | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Beyn, Wolf-JürgenUniBi; Kleinkauf, J. M.
Abstract / Bemerkung
Transversal homoclinic orbits of maps are known to generate a Canter set on which a power of the map conjugates to the Bernoulli shift on two symbols. This conjugacy may be regarded as a coding map, which for example assigns to a homoclinic symbol sequence a point in the Canter set that lies on a homoclinic orbit of the map with a prescribed number of humps. In this paper we develop a numerical method for evaluating the conjugacy at periodic and homoclinic symbol sequences in a systematic way. The approach combines our previous method for computing the primary homoclinic orbit with the constructive proof of Smale's theorem given by Palmer. It is shown that the resulting nonlinear systems are well conditioned uniformly with respect to the characteristic length of the symbol sequence and that Newton's method converges uniformly too when started at a proper pseudo orbit. For the homoclinic symbol sequences an error analysis is given. The method works in arbitrary dimensions and it is illustrated by examples.
Stichworte
multi-humped homoclinic orbits; numerical methods; homoclinic points for maps; chaos; dynamical systems
Erscheinungsjahr
1997
Band
14
Ausgabe
1-3
Seite(n)
25-53
ISSN
1017-1398
Page URI
https://pub.uni-bielefeld.de/record/1636772

Zitieren

Beyn W-J, Kleinkauf JM. Numerical approximation of homoclinic chaos. Numerical Algorithms. 1997;14(1-3):25-53.
Beyn, W. - J., & Kleinkauf, J. M. (1997). Numerical approximation of homoclinic chaos. Numerical Algorithms, 14(1-3), 25-53. doi:10.1023/A:1019196426363
Beyn, W. - J., and Kleinkauf, J. M. (1997). Numerical approximation of homoclinic chaos. Numerical Algorithms 14, 25-53.
Beyn, W.-J., & Kleinkauf, J.M., 1997. Numerical approximation of homoclinic chaos. Numerical Algorithms, 14(1-3), p 25-53.
W.-J. Beyn and J.M. Kleinkauf, “Numerical approximation of homoclinic chaos”, Numerical Algorithms, vol. 14, 1997, pp. 25-53.
Beyn, W.-J., Kleinkauf, J.M.: Numerical approximation of homoclinic chaos. Numerical Algorithms. 14, 25-53 (1997).
Beyn, Wolf-Jürgen, and Kleinkauf, J. M. “Numerical approximation of homoclinic chaos”. Numerical Algorithms 14.1-3 (1997): 25-53.