Foundation of Statistical Mechanics under Experimentally Realistic Conditions

Reimann P (2008)
PHYSICAL REVIEW LETTERS 101(19).

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
We demonstrate the equilibration of isolated macroscopic quantum systems, prepared in nonequilibrium mixed states with a significant population of many energy levels, and observed by instruments with a reasonably bound working range compared to the resolution limit. Both properties are satisfied under many, if not all, experimentally realistic conditions. At equilibrium, the predictions and limitations of statistical mechanics are recovered.
Erscheinungsjahr
Zeitschriftentitel
PHYSICAL REVIEW LETTERS
Band
101
Ausgabe
19
ISSN
eISSN
PUB-ID

Zitieren

Reimann P. Foundation of Statistical Mechanics under Experimentally Realistic Conditions. PHYSICAL REVIEW LETTERS. 2008;101(19).
Reimann, P. (2008). Foundation of Statistical Mechanics under Experimentally Realistic Conditions. PHYSICAL REVIEW LETTERS, 101(19). doi:10.1103/PhysRevLett.101.190403
Reimann, P. (2008). Foundation of Statistical Mechanics under Experimentally Realistic Conditions. PHYSICAL REVIEW LETTERS 101.
Reimann, P., 2008. Foundation of Statistical Mechanics under Experimentally Realistic Conditions. PHYSICAL REVIEW LETTERS, 101(19).
P. Reimann, “Foundation of Statistical Mechanics under Experimentally Realistic Conditions”, PHYSICAL REVIEW LETTERS, vol. 101, 2008.
Reimann, P.: Foundation of Statistical Mechanics under Experimentally Realistic Conditions. PHYSICAL REVIEW LETTERS. 101, (2008).
Reimann, Peter. “Foundation of Statistical Mechanics under Experimentally Realistic Conditions”. PHYSICAL REVIEW LETTERS 101.19 (2008).

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Diffusion and mobility of anisotropic particles in tilted periodic structures.
Wu JC, Chen Q, Wang R, Ai BQ., Chaos 25(2), 2015
PMID: 25725650
Weak disorder: anomalous transport and diffusion are normal yet again.
Khoury M, Lacasta AM, Sancho JM, Lindenberg K., Phys Rev Lett 106(9), 2011
PMID: 21405612
Current control in a tilted washboard potential via time-delayed feedback.
Hennig D., Phys Rev E Stat Nonlin Soft Matter Phys 79(4 pt 1), 2009
PMID: 19518180

32 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1984
Creep in one dimension and phenomenological theory of glass dynamics
Le, Physica C Superconductivity 254(1-2), 1995
Giant acceleration of free diffusion by use of tilted periodic potentials.
Reimann P, Van den Broeck C, Linke H, Hanggi P, Rubi JM, Perez-Madrid A., Phys. Rev. Lett. 87(1), 2001
PMID: 11461454
Diffusion in tilted periodic potentials: Enhancement, universality, and scaling.
Reimann P, Van den Broeck C, Linke H, Hanggi P, Rubi JM, Perez-Madrid A., Phys Rev E Stat Nonlin Soft Matter Phys 65(3 Pt 1), 2002
PMID: 11909026
Periodic forcing of a Brownian particle.
Faucheux LP, Stolovitzky G, Libchaber A., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 51(6), 1995
PMID: 9963256
Transport properties in disordered ratchet potentials
Marchesoni, Physical Review E 56(3), 1997
Nonlinear response theory: Transport coefficients for driving fields of arbitrary magnitude
Parris, Physical Review E 56(5), 1997
Charge-Dipole Model for the Universal Field Dependence of Mobilities in Molecularly Doped Polymers.
Dunlap DH, Parris PE, Kenkre VM., Phys. Rev. Lett. 77(3), 1996
PMID: 10062837
Diffusion and creep of a particle in a random potential
Gorokhov, Physical Review B 58(1), 1998
Mean first-passage time for an overdamped particle in a disordered force field
Denisov SI, Horsthemke W., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62(3 Pt A), 2000
PMID: 11088830
Entropy-Driven Pumping in Zeolites and Biological Channels
Chou, Physical Review Letters 82(17), 1999

LINDNER, Fluctuation and Noise Letters 1(1), 2001
Temperature and spatial diffusion of atoms cooled in a 3D lin ⊥lin bright optical lattice
Carminati, The European Physical Journal D 17(2), 2001
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
Bouchaud, Physics Reports 195(4-5), 1990
Phase control of directed diffusion in a symmetric optical lattice.
Schiavoni M, Sanchez-Palencia L, Renzoni F, Grynberg G., Phys. Rev. Lett. 90(9), 2003
PMID: 12689222
Structure of optical vortices.
Curtis JE, Grier DG., Phys. Rev. Lett. 90(13), 2003
PMID: 12689289
Threshold diffusion in a tilted washboard potential
Costantini, EPL (Europhysics Letters) 48(5), 1999
On the Self-Diffusion of Ions in a Polyelectrolyte Solution
Lifson, The Journal of Chemical Physics 36(9), 1962
Velocity and diffusion constant of a periodic one-dimensional hopping model
Derrida, Journal of Statistical Physics 31(3), 1983
Exact results and self-averaging properties for random-random walks on a one-dimensional infinite lattice
Aslangul, Journal of Statistical Physics 55(1-2), 1989
Mobility in a one-dimensional disorder potential
Scheidl, Zeitschrift für Physik B Condensed Matter 97(2), 1995
Microfluidics: Fluid physics at the nanoliter scale
Squires, Reviews of Modern Physics 77(3), 2005
Entropic transport: kinetics, scaling, and control mechanisms.
Reguera D, Schmid G, Burada PS, Rubi JM, Reimann P, Hanggi P., Phys. Rev. Lett. 96(13), 2006
PMID: 16711977
Giant colloidal diffusivity on corrugated optical vortices.
Lee SH, Grier DG., Phys. Rev. Lett. 96(19), 2006
PMID: 16803093
Diffusion in a rough potential.
Zwanzig R., Proc. Natl. Acad. Sci. U.S.A. 85(7), 1988
PMID: 3353365
Single file diffusion enhancement in a fluctuating modulated quasi-1D channel
Coupier, EPL (Europhysics Letters) 77(6), 2007
Dielectrophoretic manipulation of DNA: separation and polarizability.
Regtmeier J, Duong TT, Eichhorn R, Anselmetti D, Ros A., Anal. Chem. 79(10), 2007
PMID: 17444613
Characterizing potentials by a generalized Boltzmann factor.
Blickle V, Speck T, Seifert U, Bechinger C., Phys Rev E Stat Nonlin Soft Matter Phys 75(6 Pt 1), 2007
PMID: 17677202
Velocity and diffusion coefficient of a random asymmetric one-dimensional hopping model
Aslangul, Journal de Physique 50(8), 1989
Gating ratchet for cold atoms.
Gommers R, Lebedev V, Brown M, Renzoni F., Phys. Rev. Lett. 100(4), 2008
PMID: 18352250
Diffusion of colloidal particles in a tilted periodic potential: theory versus experiment.
Evstigneev M, Zvyagolskaya O, Bleil S, Eichhorn R, Bechinger C, Reimann P., Phys Rev E Stat Nonlin Soft Matter Phys 77(4 Pt 1), 2008
PMID: 18517578

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18999809
PubMed | Europe PMC

arXiv: 0810.3092

Inspire: 802927

Suchen in

Google Scholar