Dynamics of tuples of matrices
Costakis, G.
Hadjiloucas, D.
Manoussos, Antonios
Hypercyclic operators
tuples of matrices
In this article we answer a question raised by N. Feldman in 2008 concerning the dynamics of tuples of operators on R-n. In particular, we prove that for every positive integer n >= 2 there exist n-tuples (A1, A2,..., A(n)) of n x n matrices over R such that (A1, A2,..., A(n)) is hypercyclic. We also establish related results for tuples of 2 x 2 matrices over R or C being in Jordan form.
AMER MATHEMATICAL SOC
2009
info:eu-repo/semantics/article
doc-type:article
text
https://pub.uni-bielefeld.de/record/1636629
Costakis G, Hadjiloucas D, Manoussos A. Dynamics of tuples of matrices. <em>Proceedings of the American Mathematical Society</em>. 2009;137(03):1025-1034.
eng
info:eu-repo/semantics/altIdentifier/doi/10.1090/s0002-9939-08-09717-7
info:eu-repo/semantics/altIdentifier/issn/0002-9939
info:eu-repo/semantics/altIdentifier/wos/000261153200030
info:eu-repo/semantics/altIdentifier/arxiv/1008.0780
info:eu-repo/semantics/closedAccess